Chapter 12 Empirical Evidence in Conceptual Engineering, or the Defense of ‘Predictive Understanding’

In: Conceptual Engineering
Authors:
Wiktor Rorot Human Interactivity and Language Lab, University of Warsaw Poland

Search for other papers by Wiktor Rorot in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1867-1091
and
Marcin Miłkowski Institute of Philosophy and Sociology, Polish Academy of Sciences Poland

Search for other papers by Marcin Miłkowski in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7646-5742

Purchase instant access (PDF download and unlimited online access):

Abstract

The advent of digital philosophy of science – the practice of employing large textual datasets together with text mining and natural language processing tools within philosophy of science – has dramatically shifted philosophers’ ability to account for scientific practice, without relying on small and often arbitrary samples of the literature. Instead, digital philosophy of science allows for the investigation of tens of thousands of academic papers, not to mention other genres of scientific communication, providing a broader perspective on scientific practice. The methodological issues that come with this novel approach have been traditionally discussed around the necessary choice between using these methods for discovery and exploration of new philosophical hypothesis, and the testing of existing stances. In this chapter, we propose a different path that remains hitherto underexplored in digital philosophy: namely, one offered by conceptual engineering. We provide general methodological guidelines for using digital tools in the study of scientific literature for the purpose of clarifying and honing existing philosophical concepts. To substantiate this position, we draw examples from existing research which has hinted at this approach, and apply our proposed methodology to the notion of “understanding” in scientific practice to show how it can help researchers across subdisciplines of philosophy apply this concept usefully, including in the philosophy of artificial intelligence.

  • Collapse
  • Expand

Conceptual Engineering

Methodological and Metaphilosophical Issues

  • Alfano, M. 2019. Nietzsche’s moral psychology. Cambridge: Cambridge University Press.

  • Ankeny, R., Chang, H., Boumans, M., and Boon, M. 2011. Introduction: Philosophy of science in practice. European Journal for Philosophy of Science, 1 (3), 303307. https://doi.org/10.1007/s13194-011-0036-4

    • Search Google Scholar
    • Export Citation
  • Anonymous Reviewer, and Teichmann, S. A. n.d.. Decision letter: Inference of gene regulation functions from dynamic transcriptome data. peer review. https://doi.org/10.7554/eLife.12188.034

    • Search Google Scholar
    • Export Citation
  • Cappelen, H. 2018. Fixing language: An essay on conceptual engineering First edition. Oxford University Press.

  • Carnap, R. 1967. Logical foundations of probability. Chicago: University of Chicago Press.

  • Cattoglio, C., Pustova, I., Walther, N., Ho, J. J., Hantsche-Grininger, M., Inouye, C. J., Hossain, M. J., Dailey, G. M., Ellenberg, J., Darzacq, X., Tjian, R., & Hansen, A. S. 2019. Determining cellular CTCF and cohesin abundances to constrain 3D genome models. eLife, 8, e40164. https://doi.org/10.7554/eLife.40164

    • Search Google Scholar
    • Export Citation
  • Chantreau, M., Poux, C., Lensink, M. F., Brysbaert, G., Vekemans, X., and Castric, V. 2019. Asymmetrical diversification of the receptor-ligand interaction controlling self-incompatibility in Arabidopsis. eLife, 8, e50253. https://doi.org/10.7554/eLife.50253

    • Search Google Scholar
    • Export Citation
  • Chavalarias, D., and Cointet, J.-P. 2013. Phylomemetic Patterns in Science Evolution – The Rise and Fall of Scientific Fields. PLoS ONE, 8 (2), e54847. https://doi.org/10.1371/journal.pone.0054847

    • Search Google Scholar
    • Export Citation
  • Clark, A., and Chalmers, D. 1998. The Extended Mind. Analysis, 58 (1), 719. https://doi.org/10.1093/analys/58.1.7

  • Currie, A. 2015. Philosophy of Science and the Curse of the Case Study. In: Daly, C. eds The Palgrave Handbook of Philosophical Methods. Palgrave Macmillan, London. https://doi.org/10.1057/9781137344557_22

    • Search Google Scholar
    • Export Citation
  • Dąmbska, I. 1975. W sprawie pojęcia rozumienia. In Znaki i myśli: wybór pism z semiotyki, teorii nauki i historii filozofii pp. 4956. Warszawa: Państwowe Wydawnictwo Naukowe.

    • Search Google Scholar
    • Export Citation
  • Dębowski, Ł. J. 2021. Information theory meets power laws: Stochastic processes and language models. Wiley.

  • Dellsén, F. 2016. Scientific progress: Knowledge versus understanding. Studies in History and Philosophy of Science Part A, 56, 7283. https://doi.org/10.1016/j.shpsa.2016.01.003

    • Search Google Scholar
    • Export Citation
  • Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. 2019, May 24. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. http://arxiv.org/abs/1810.04805

    • Search Google Scholar
    • Export Citation
  • Doran, D., Schulz, S., and Besold, T. R. 2017, October 2. What Does Explainable AI Really Mean? A New Conceptualization of Perspectives. http://arxiv.org/abs/1710.00794

    • Search Google Scholar
    • Export Citation
  • Douglas, H. E. 2009. Reintroducing Prediction to Explanation. Philosophy of Science, 76 (4), 444463. https://doi.org/10.1086/648111

    • Search Google Scholar
    • Export Citation
  • Dove, G. 2014. Thinking in Words: Language as an Embodied Medium of Thought. Topics in Cognitive Science, 6 (3), 371389. https://doi.org/10.1111/tops.12102

    • Search Google Scholar
    • Export Citation
  • Eck, E., Liu, J., Kazemzadeh-Atoufi, M., Ghoreishi, S., Blythe, S. A., and Garcia, H. G. 2020. Quantitative dissection of transcription in development yields evidence for transcription-factor-driven chromatin accessibility. eLife, 9, e56429. https://doi.org/10.7554/eLife.56429

    • Search Google Scholar
    • Export Citation
  • Elgin, C. 2007. Understanding and the Facts. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 132 (1), 3342. http://www.jstor.org/stable/25471843

    • Search Google Scholar
    • Export Citation
  • Firth, J. R. 1957. A synopsis of linguistic theory 1930–55. In J. R. Firth, Studies in Linguistic Analysis pp. 132. Blackwell.

  • Gettier, E. L. 1963. Is Justified True Belief Knowledge? Analysis, 23 (6), 121123. https://doi.org/10.1093/analys/23.6.121

  • Haslanger, S. 2003. Gender and Race: What Are They? What Do We Want Them to Be? In A. Bird and J. Ladyman Eds., Arguing About Science, 95116. London: Routledge.

    • Search Google Scholar
    • Export Citation
  • Hempel, C. G., and Oppenheim, P. 1948. Studies in the Logic of Explanation. Philosophy of Science, 15 (2), 135175. https://doi.org/10.1086/286983

    • Search Google Scholar
    • Export Citation
  • Horák, A., and Rambousek, A. 2018. Lexicography and natural language processing. In P. A. Fuertes Olivera Ed., The Routledge handbook of lexicography. London: Routledge.

    • Search Google Scholar
    • Export Citation
  • Isaac, A. M. C. 2019. The Semantics Latent in Shannon Information. The British Journal for the Philosophy of Science, 70 (1), 103125. https://doi.org/10.1093/bjps/axx029

    • Search Google Scholar
    • Export Citation
  • Jadacki, J. J. 1990. O rozumieniu. Z filozoficznych podstaw semiotyki. Warszawa: Wydawnictwa Uniwersytetu Warszawskiego.

  • Khalifa, K. 2017. Understanding, explanation, and scientific knowledge. Cambridge: Cambridge University Press.

  • Kilgarriff, A., Baisa, V., Bušta, J., Jakubíček, M., Kovář, V., Michelfeit, J., Rychlý, P., and Suchomel, V. 2014. The Sketch Engine: Ten years on. Lexicography, 1 (1), 736. https://doi.org/10.1007/s40607-014-0009-9

    • Search Google Scholar
    • Export Citation
  • Kim, J. 1994. Explanatory Knowledge and Metaphysical Dependence. Philosophical Issues, 5, 51. https://doi.org/10.2307/1522873

  • Koch S., Löhr G., and Pinder M. 2023. Recent work in the theory of conceptual engineering, Analysis, 833, 589603. https://doi.org/10.1093/analys/anad032

    • Search Google Scholar
    • Export Citation
  • Lean, O. M., Rivelli, L., and Pence, C. H. 2023. Digital Literature Analysis for Empirical Philosophy of Science. The British Journal for the Philosophy of Science, 74 (4), 875898. https://doi.org/10.1086/715049

    • Search Google Scholar
    • Export Citation
  • Lenci, A. 2008. Distributional semantics in linguistic and cognitive research. Italian Journal of Linguistics, 20 (1), 131. https://www.italian-journal-linguistics.com/app/uploads/2021/05/1_Lenci.pdf

    • Search Google Scholar
    • Export Citation
  • Lenci, A. 2018. Distributional Models of Word Meaning. Annual Review of Linguistics, 4 (1), 151171. https://doi.org/10.1146/annurev-linguistics-030514-125254

    • Search Google Scholar
    • Export Citation
  • Leslie, S.-J. 2017. The Original Sin of Cognition: Fear, Prejudice, and Generalization. Journal of Philosophy, 114 (8), 393421. https://doi.org/10.5840/jphil2017114828

    • Search Google Scholar
    • Export Citation
  • Machamer, P., Darden, L., and Craver, C. F. 2000. Thinking about Mechanisms. Philosophy of Science, 67 (1), 125. https://doi.org/10.1086/392759

    • Search Google Scholar
    • Export Citation
  • Machery, E. 2004. Semantics, cross-cultural style. Cognition, 92 (3), B1B12. https://doi.org/10.1016/j.cognition.2003.10.003

  • Malaterre, C., Chartier, J.-F., and Pulizzotto, D. 2019. What Is This Thing Called Philosophy of Science? A Computational Topic-Modeling Perspective, 1934–2015. HOPOS: The Journal of the International Society for the History of Philosophy of Science, 9 (2), 215249. https://doi.org/10.1086/704372

    • Search Google Scholar
    • Export Citation
  • Mickus, T., Paperno, D., Constant, M., and van Deemter, K. 2020. What do you mean, BERT? Assessing BERT as a Distributional Semantics Model. Proceedings of the Society for Computation in Linguistics 2020, 279290. https://doi.org/10.7275/T778-JA71

    • Search Google Scholar
    • Export Citation
  • Miłkowski, M. 2022. Cognitive Artifacts and Their Virtues in Scientific Practice. Studies in Logic, Grammar and Rhetoric, 67 (3), 219246. https://doi.org/10.2478/slgr-2022-0012

    • Search Google Scholar
    • Export Citation
  • Miłkowski, M., and Jasieński, K. 2022. eLife Open Peer Review Corpus [dataset]. RepOD. https://doi.org/10.18150/FKPEQN

  • Miłkowski, M., Jasieński, K., and Depta, R. 2023. MDPI Open Peer Review Corpus 2 [dataset]. RepOD. https://doi.org/10.18150/SHKP7B

  • Mitchell, M. 2019. Artificial intelligence: A guide for thinking humans. Farrar, Straus and Giroux.

  • Moretti, F. 2013. Distant reading. London: Verso.

  • Muñoz, M. M., Hu, Y., Anderson, P. S. L., and Patek, S. 2018. Strong biomechanical relationships bias the tempo and mode of morphological evolution. eLife, 7, e37621. https://doi.org/10.7554/eLife.37621

    • Search Google Scholar
    • Export Citation
  • Murdock, J., Allen, C., Börner, K., Light, R., McAlister, S., Ravenscroft, A., Rose, R., Rose, D., Otsuka, J., Bourget, D., Lawrence, J., and Reed, C. 2017. Multi-level computational methods for interdisciplinary research in the HathiTrust Digital Library. PLOS ONE, 12 (9), e0184188. https://doi.org/10.1371/journal.pone.0184188

    • Search Google Scholar
    • Export Citation
  • Nandagopal, N., Santat, L. A., and Elowitz, M. B. 2019. Cis-activation in the Notch signaling pathway. eLife, 8, e37880. https://doi.org/10.7554/eLife.37880

    • Search Google Scholar
    • Export Citation
  • OpenAI. 2023, March 27. GPT-4 Technical Report. http://arxiv.org/abs/2303.08774

  • Overton, J. A. 2013. “Explain” in scientific discourse. Synthese, 190 (8), 13831405. https://doi.org/10.1007/s11229-012-0109-8

  • Páez, A. 2019. The Pragmatic Turn in Explainable Artificial Intelligence XAI. Minds and Machines, 29 (3), 441459. https://doi.org/10.1007/s11023-019-09502-w

    • Search Google Scholar
    • Export Citation
  • Pichler, A., and Reiter, N. 2022. From Concepts to Texts and Back: Operationalization as a Core Activity of Digital Humanities. Journal of Cultural Analytics, 7 (4). https://doi.org/10.22148/001c.57195

    • Search Google Scholar
    • Export Citation
  • Pitt, J. C. 2001. The Dilemma of Case Studies: Toward a Heraclitian Philosophy of Science. Perspectives on Science, 9 (4), 373382. https://doi.org/10.1162/106361401760375785

    • Search Google Scholar
    • Export Citation
  • Potochnik, A. 2017. Idealization and the aims of science. Chicago: The University of Chicago Press.

  • Regt, H. W. de. 2017. Understanding scientific understanding. Oxford: Oxford University Press.

  • Rescher, N. 1979. Cognitive systematization: A systems-theoretic approach to a coherentist theory of knowledge. Oxford: Basil Blackwell.

    • Search Google Scholar
    • Export Citation
  • Rowbottom, D. P. 2014. Aimless science. Synthese, 191 (6), 12111221. https://doi.org/10.1007/s11229-013-0319-8

  • Sękowski, K. 2022. Concept Revision, Concept Application and the Role of Intuitions in Gettier Cases. Episteme, 119. https://doi.org/10.1017/epi.2022.49

    • Search Google Scholar
    • Export Citation
  • Stich, S., and Tobia, K. P. 2016. Experimental Philosophy and the Philosophical Tradition. In J. Sytsma and W. Buckwalter Eds., A Companion to Experimental Philosophy 1st ed., pp. 321. Wiley. https://doi.org/10.1002/9781118661666.ch1

    • Search Google Scholar
    • Export Citation
  • Strevens, M. 2013. No understanding without explanation. Studies in History and Philosophy of Science Part A, 44 (3), 510515. https://doi.org/10.1016/j.shpsa.2012.12.005

    • Search Google Scholar
    • Export Citation
  • Tanswell, F. S. 2018 Conceptual engineering for mathematical concepts, Inquiry, 61 (8), 881913, DOI: 10.1080/0020174X.2017.1385526

  • Turney, P. D. 2013. Distributional Semantics Beyond Words: Supervised Learning of Analogy and Paraphrase. Transactions of the Association for Computational Linguistics, 1, 353366. https://doi.org/10.1162/tacl_a_00233

    • Search Google Scholar
    • Export Citation
  • Wilkenfeld, D. A. 2019. Understanding as compression. Philosophical Studies, 176 (10), 28072831. https://doi.org/10.1007/s11098-018-1152-1

    • Search Google Scholar
    • Export Citation
  • Wittgenstein, L. 1968. Philosophical investigations. Oxford: Basil Blackwell.

  • Yarkoni, T., and Westfall, J. 2017. Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspectives on Psychological Science, 12 (6), 11001122. https://doi.org/10.1177/1745691617693393

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past 365 days Past 30 Days
Abstract Views 171 171 33
Full Text Views 6 6 0
PDF Views & Downloads 7 7 0