Chapter 3 Malaria in the Amazon Basin: how climate change and natural disasters create new challenges for an old disease

In: Planetary health approaches to understand and control vector-borne diseases
Authors:
Leonardo Suveges Moreira Chaves† Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo Av. Dr. Arnaldo, 715 – Pacaembu, CEP 01246-904, São Paulo, SP Brazil

Search for other papers by Leonardo Suveges Moreira Chaves† in
Current site
Google Scholar
PubMed
Close
,
Tatiane Moraes de Sousa Departamento de Endemias Samuel Pessoa (DENSP), Sergio Arouca National School of Public Health (ENSP), Fundação Oswaldo Cruz – FIOCRUZ Rua Leopoldo Bulhões 1480, Sala 601, Bairro Manguinhos, CEP 21041–210, Rio de Janeiro, RJ Brazil

Search for other papers by Tatiane Moraes de Sousa in
Current site
Google Scholar
PubMed
Close
,
Luiz Carlos Ferreira Penha Programa VigiFronteiras Brasil, Fundação Oswaldo Cruz – FIOCRUZ Av. Brasil, 4365 – Manguinhos, CEP 21040–900, Rio de Janeiro, RJ Brazil

Search for other papers by Luiz Carlos Ferreira Penha in
Current site
Google Scholar
PubMed
Close
, and
Sandra S. Hacon Departamento de Endemias Samuel Pessoa (DENSP), Sergio Arouca National School of Public Health (ENSP), Fundação Oswaldo Cruz – FIOCRUZ Rua Leopoldo Bulhões 1480, Sala 601, Bairro Manguinhos, CEP 21041–210, Rio de Janeiro, RJ Brazil

Search for other papers by Sandra S. Hacon in
Current site
Google Scholar
PubMed
Close

Purchase instant access (PDF download and unlimited online access):

$40.00

Abstract

Amazon Basin has experienced intense forest degradation of its ecosystems, increasing environmental, social, and economic threats. Deforestation is the major threat to biodiversity as well as increasing pollution levels and their impacts, and the frequency of extreme hydrometeorological events. These natural disasters cause serious damage and losses to human social systems, impacting the ability of communities to keep their houses and altering their welfare, livelihood systems, health services capacity, and opportunities for social development. In addition, these forces disrupt natural systems through changing seasonal patterns and variable long-term trends in rainfall and temperature and increases in frequency and intensity of climate and weather extremes. Most natural disasters have been associated with floods, heatwaves, and tropical cyclones. These can have corresponding impacts on zoonotic and other infectious diseases, leading to emergence in new areas in the world and increased risks of epidemics. Flooding and other hydrometeorological hazards, storms, heat waves also can affect vector breeding sites and transmission of vector-borne diseases such as malaria, dengue and chikungunya. Open gold mining, fishponds, deforestation, and hydroelectric power plant in Amazon are some examples of drivers that can represent synergistic anthropogenically driven disasters, leading to events, such as mudslide, mosquito proliferation and vector-borne diseases. These events impact the most vulnerable populations, with people most impacted by floods, severe droughts, and loss of income at the highest risks of disease outbreaks. Malaria may not represent severe illness and deaths in Amazon Basin; however, the disease has strong impact in public health, with harmful effects in socio-economic and cultural development, with high morbidity, economic productivity losses, and severe negative impact on cognitive development of children, with anaemia, malnutrition, and saturating health services capacity. In this chapter, we present the main drivers and vulnerabilities associated with malaria incidence in Amazon Basin in time of extreme climatic events.

  • Collapse
  • Expand
  • Adde A et al. (2016) Dynamical mapping of Anopheles darlingi densities in a residual malaria transmission area of French Guiana by using remote sensing and meteorological data.’ PLoS One 11.10: e0164685.

    • Search Google Scholar
    • Export Citation
  • Allan RP, Hawkin E, Bellouin N and Collins B (2021) IPCC, 2021: Summary for Policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R and Zhou B. (eds) Climate Change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. (In Press)

    • Search Google Scholar
    • Export Citation
  • Alkama R and Cescatti A (2016) Biophysical climate impacts of recent changes in global forest cover. Science 351: 600604.

  • Afrane YA, Zhou G, Lawson BW, Githeko AK and Yan G (2006) Effects of microclimatic changes caused by deforestation on the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. The American journal of tropical medicine and hygiene, 74, 772778.

    • Search Google Scholar
    • Export Citation
  • Afrane YA, Zhou G, Lawson BW, Githeko AK and Yan G (2007) Life-table analysis of Anopheles arabiensis in western Kenya highlands: effects of land covers on larval and adult survivorship. The American journal of tropical medicine and hygiene, 77, 660666.

    • Search Google Scholar
    • Export Citation
  • Aguiar APD, Vieira ICG, Assis TO, Dalla‐Nora EL, Toledo PM, Oliveira Santos-Junior RA, Batistella M, Coelho AS, Savaget EK, Aragão LEOC and Nobre CA (2016) Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Global change biology, 22(5), pp. 18211840.

    • Search Google Scholar
    • Export Citation
  • Basta PC and Hacon SS (2020) Impacto do mercúrio em áreas protegidas e povos da floresta na Amazônia Oriental: Uma abordagem integrada saúde-ambiente. Aspectos Metodológicos e Resultados Preliminares.

  • Basta PC, Viana PVS, Vasconcellos ACS, et al. (2021) Mercury Exposure in Munduruku Indigenous Communities from Brazilian Amazon: Methodological Background and an Overview of the Principal Results. Int. J. Environ. Res. Public Health, 18: 9222. https://doi.org/10.3390/ijerph18179222.

    • Search Google Scholar
    • Export Citation
  • Barbieri AF and Carr DL (2005) Gender-specific out-migration, deforestation and urbanization in the Ecuadorian Amazon. Global and Planetary Change, 47, 99110.

    • Search Google Scholar
    • Export Citation
  • Barbieri AF and Soares-Filho BS (2005) Population and land use effects on malaria prevalence in the southern Brazilian Amazon. Human Ecology, 33(6), 847874.

    • Search Google Scholar
    • Export Citation
  • Barrera R, Felix G, Acevedo V, Amador M, Rodriguez D, Rivera L, Gonzalez O, Nazario N, Ortiz M and Muñoz-Jordan JL (2019) Impacts of Hurricanes Irma and Maria on Aedes aegypti populations, aquatic habitats, and mosquito infections with dengue, chikungunya, and Zika viruses in Puerto Rico. The American journal of tropical medicine and hygiene, 100, 1413.

    • Search Google Scholar
    • Export Citation
  • Barros F, Arruda M, Gurgel H and Honório N (2011) Spatial clustering and longitudinal variation of Anopheles darlingi (Diptera: Culicidae) larvae in a river of the Amazon: the importance of the forest fringe and of obstructions to flow in frontier malaria. Bulletin of entomological research, 101, 643658.

    • Search Google Scholar
    • Export Citation
  • Barros FS and Honório NA (2015) Deforestation and malaria on the amazon frontier: larval clustering of Anopheles darlingi (Diptera: Culicidae) determines focal distribution of malaria. The American journal of tropical medicine and hygiene, 93, 939953.

    • Search Google Scholar
    • Export Citation
  • Brando P. et al. (2020) Amazon wildfires: Scenes from a foreseeable disaster. Flora, v. 268, p. 151609.

  • Below R, Wirtz A and Guha-Sapir D (2009) Disaster category classification and peril terminology for operational purposes.

  • Berazneva J and Byker TS (2017) Does Forest Loss Increase Human Disease? Evidence from Nigeria. American Economic Review, 107, 516521.

    • Search Google Scholar
    • Export Citation
  • Bezerra JMT, Barbosa DS, Martins-Melo FR, Werneck GL, Braga ÉM, Tauil PL and Carneiro M (2020) Changes in malaria patterns in Brazil over 28 years (1990–2017): results from the Global Burden of Disease Study 2017. Population Health Metrics, 18(1), 115.

    • Search Google Scholar
    • Export Citation
  • Blanford JI, Blanford S, Crane RG, Mann ME, Paaijmans KP, Schreiber KV, Thomas MB (2013) Implications of temperature variation for malaria parasite development across Africa. Sci Rep 3: 1300. https://doi.org/10.1038/srep01300.

    • Search Google Scholar
    • Export Citation
  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 14441449.

  • Bonan GB and Doney SC (2018). Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science 359, eaam8328.

    • Search Google Scholar
    • Export Citation
  • Boulton CA, Lenton TM and Boers N (2022) Pronounced loss of Amazon rainforest resilience since the early 2000s. Nature Climate Change, p. 18.

    • Search Google Scholar
    • Export Citation
  • Braz RM and Barcellos C (2018) Análise do processo de eliminação da transmissão da malária na Amazônia brasileira com abordagem espacial da variação da incidência da doença em 2016. Epidemiol Serv Saúde, 27(3): e2017253.

    • Search Google Scholar
    • Export Citation
  • Brasil. Ministério da Saúde (2016) Secretaria de Gestão do Trabalho e da Educação na Saúde. Departamento de Gestão da Educação na Saúde. Programa de Qualificação de Agentes Indígenas de Saúde (AIS) e Agentes Indígenas de Saneamento (AISAN) / Ministério da Saúde, Secretaria de Gestão do Trabalho e da Educação na Saúde, Departamento de Gestão da Educação na Saúde. – Brasília-DF: Ministério da Saúde.

  • Brasil. Ministério da Saúde (2003) Secretaria de Vigilância em Saúde. Programa Nacional de Prevenção e Controle da Malária PNCM / Ministério da Saúde, Secretaria de Vigilância em Saúde. – Brasília: Ministério da Saúde.

  • Butt EW, Conibear L, Reddington CL, Darbyshire E, Morgan WT, Coe H, Artaxo P, Brito J, Knote C and Spracklen DV (2020). Large air quality and human health impacts due to Amazon forest and vegetation fires. Environmental Research Communications, 2, 095001. https://doi.org/10.1088/2515-7620/abb0db.

    • Search Google Scholar
    • Export Citation
  • Brasil. Câmara dos Deputados (2021) Proposta determina indenização a ex-servidor contaminhado por DDT. Available at: https://www.camara.leg.br/noticias/756902-proposta-determina-indenizacao-a-ex-servidor-contaminado-por-ddt.

    • Search Google Scholar
    • Export Citation
  • Campanharo WA, Morello T, Christofoletti MA, Anderson LO (2021) Hospitalization Due to Fire-Induced Pollution in the Brazilian Legal Amazon from 2005 to 2018. Remote Sensing. Dec 24;14(1):69.

    • Search Google Scholar
    • Export Citation
  • Carreiras J, Pereira JMC and Shimabukuro YE (2006) A land cover map for the Brazilian Legal Amazon using SPOT-4 VEGETATION data and machine learning algorithms. Photogrammetric Engineering and Remote Sensing, 72, 97910.

    • Search Google Scholar
    • Export Citation
  • Castro MC, Baeza A, Codeço CT, Cucunubá ZM, Dal’asta AP, De Leo GA, Dobson AP, Carrasco-Escobar G, Lana, RM and Lowe R (2019) Development, environmental degradation, and disease spread in the Brazilian Amazon. PLoS biology, 17, e3000526.

    • Search Google Scholar
    • Export Citation
  • Castro MC and Singer BH (2019) Malaria in the Brazilian Amazon: new understanding and directions for intervention. Water and Sanitation‐Related Diseases and the Changing Environment: Challenges, Interventions, and Preventive Measures: 127146.

    • Search Google Scholar
    • Export Citation
  • Castro MC, Monte-Mór RL, Sawyer DO, Singer BH (2006) Malaria risk on the Amazon frontier. Proc Natl Acad Sci USA, 103: 24522457.

  • Charnley GEC, Kelman I, Gaythorpe KAM, Murray KA (2021) Traits and risk factors of post-disaster infectious disease outbreaks: a systematic review. Sci Rep, Mar 10;11(1): 5616. https://doi.org/10.1038/s41598-021-85146-0.

    • Search Google Scholar
    • Export Citation
  • Chaves LF, Koenraadt CJ (2010) Climate change and highland malaria: fresh air for a hot debate. The Quarterly review of biology, 85(1), 2755.

    • Search Google Scholar
    • Export Citation
  • Chaves LSM, Bergo ES, Conn JE, Laporta GZ, Prist PR and Sallum MAM (2021) Anthropogenic landscape decreases mosquito biodiversity and drives malaria vector proliferation in the Amazon rainforest. PLoS One, 16, e0245087.

    • Search Google Scholar
    • Export Citation
  • Chaves LSM, Conn JE, López RVM and Sallum MAM (2018) Abundance of impacted forest patches less than 5 km2 is a key driver of the incidence of malaria in Amazonian Brazil. Scientific reports, 8, 7077.

    • Search Google Scholar
    • Export Citation
  • Chaves LSM, Fry J, Malik A, Geschke A, Sallum MAM and Lenzen M (2020) Global consumption and international trade in deforestation-associated commodities could influence malaria risk. Nature Communications, 11, 110.

    • Search Google Scholar
    • Export Citation
  • Chowell G, Mizumoto K, Banda JM, Poccia S, Perrings C (2019) Assessing the potential impact of vector-borne disease transmission following heavy rainfall events: a mathematical framework. Philosophical Transactions of the Royal Society B, 374(1775), 20180272.

    • Search Google Scholar
    • Export Citation
  • Chu V, Sallum M, Moore T, Lainhart W, Schlichting C and Conn J (2019) Regional variation in life history traits and plastic responses to temperature of the major malaria vector Nyssorhynchus darlingi in Brazil. Scientific reports, 9, 5356.

    • Search Google Scholar
    • Export Citation
  • Cohee LM, Laufer MK (2017) Malaria in children. Pediatr. Clin. N. Am., 64:851866. https://doi.org/10.1016/j.pcl.2017.03.004.

  • Cohen JM, Le Menach A, Pothin E, Eisele TP, Gething PW, Eckhoff PA, Moonen B, Schapira A and Smith DL (2017) Mapping multiple components of malaria risk for improved targeting of elimination interventions. Malar J, 16, 459.

    • Search Google Scholar
    • Export Citation
  • COIAB – Coordenação das Organizações Indígenas da Amazônia Brasileira (2022) História e missão. Available at https://coiab.org.br/quemsomos.

    • Search Google Scholar
    • Export Citation
  • Conceição KV et al. (2021) Government policies endanger the indigenous peoples of the Brazilian Amazon. Land Use Policy, v. 108, p. 105663.

    • Search Google Scholar
    • Export Citation
  • Conn JE et al. (2002) Emergence of a new neotropical malaria vector facilitated by human migration and changes in land use. Am. J. Trop. Med. Hyg. 66, 1822.

    • Search Google Scholar
    • Export Citation
  • Curtis PG, Slay CM, Harris NL, Tyukavina A and Hansen MC (2018) Classifying drivers of global forest loss. Science, 361, 11081111.

  • Da Cruz FV, Peiter PC, Carvajal-Cortés JJ, Dos Santos PR, Mendonça GMDS, Suárez-Mutis MC (2019) Complex malaria epidemiology in an international border area between Brazil and French Guiana: challenges for elimination. Tropical medicine and health, 47(1), 112.

    • Search Google Scholar
    • Export Citation
  • Davidson EA, De Araújo AC, Artaxo P, Balch JK, Brown IF, Bustamante CMM, Coe MT, Defries RS, Keller M and Longo M (2012) The Amazon basin in transition. Nature, 481, 321328, 2012.

    • Search Google Scholar
    • Export Citation
  • De Oliveira BFA et al. (2020) Impacts of heat stress conditions on mortality from respiratory and cardiovascular diseases in Brazil. Sustain. Debate 11, 297313, 2020.

    • Search Google Scholar
    • Export Citation
  • Dobson AP, Pimm SL, Hannah L, Kaufman L, Ahumada JA, Ando AW, Bernstein A, Busch J, Daszak P and Engelmann J (2020) Ecology and economics for pandemic prevention. Science, 369, 379381.

    • Search Google Scholar
    • Export Citation
  • Dos Reis IC, Codeço CT, Degener CM, Keppeler EC, Muniz MM, De Oliveira FGS, Cortês JJC, De Freitas MA, De Souza CAA and Rodrigues FCM (2015) Contribution of fish farming ponds to the production of immature Anopheles spp. in a malaria-endemic Amazonian town. Malaria Journal, 14, 112.

    • Search Google Scholar
    • Export Citation
  • Dos Reis M, Graça PMLA, Yanai AM, Ramos CJP and Fearnside PM (2021) Forest fires and deforestation in the central Amazon: Effects of landscape and climate on spatial and temporal dynamics. Journal of Environmental Management, 288, 112310. https://doi.org/10.1016/j.jenvman.2021.112310.

    • Search Google Scholar
    • Export Citation
  • Duminil J, Mona S, Mardulyn P, Doumenge C, Walmacq F, Doucet JL and Hardy OJ (2015) Late Pleistocene molecular dating of past population fragmentation and demographic changes in African rain forest tree species supports the forest refuge hypothesis. Journal of biogeography, 42, 14431454.

    • Search Google Scholar
    • Export Citation
  • Ellwanger JH, Kulmann-Leal B, Kaminski VL, et al. (2020) Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. An Acad Bras Cienc Apr 17;92(1): e20191375. https://doi.org/10.1590/0001-3765202020191375. PMID: 32321030.

    • Search Google Scholar
    • Export Citation
  • Fearnside PM (2001) Land-tenure issues as factors in environmental destruction in Brazilian Amazonia: the case of southern Pará. World Development 29(8): 13611372. https://doi.org/10.1016/S0305-750X(01)00039-0.

    • Search Google Scholar
    • Export Citation
  • Fearnside PM (2015) Impactos Sociais da Barragem de Tucuruí. pp. 3752. In: Hidrelétricas na Amazônia: Impactos Ambientais e Sociais na Tomada de Decisões sobre Grandes Obras. Vol. 1. Editora do Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas. 296 pp.

    • Search Google Scholar
    • Export Citation
  • Feged-Rivadeneira A and Evans S (2019) Ethnography of a parasite: A quantitative ethnographic observation of forest malaria in the Amazon basin. Scandinavian journal of public health 47.8: 820831.

    • Search Google Scholar
    • Export Citation
  • Fernández-Llamazares A, López-Baucells PM, Velazco A, Rocha GR, Terraube J and Cabeza M (2021) The Importance of indigenous territories for conserving bat diversity across the Amazon biome. Perspectives in Ecology and Conservation. https://doi.org/10.1016/j.pecon.2020.11.001.

    • Search Google Scholar
    • Export Citation
  • Ferreira FADS, Arcos AN, Sampaio RTDM, Rodrigues IB and Tadei WP (2015) Effect of Bacillus sphaericus Neide on Anopheles (Diptera: Culicidae) and associated insect fauna in fish ponds in the Amazon. Revista Brasileira de Entomologia, 59, 234239.

    • Search Google Scholar
    • Export Citation
  • Ferreira MU, Castro MC (2019) Malaria situation in Latin America and the Caribbean: residual and resurgent transmission and challenges for control and elimination. In Malaria Control and Elimination (pp. 5770). Humana, New York, NY.

    • Search Google Scholar
    • Export Citation
  • Fiocruz (2022) Agentes de Combate a Endemias. Available at: https://www.epsjv.fiocruz.br/educacao-profissional-em-saude/profissoes/agente-de-combate-a-endemias.

    • Search Google Scholar
    • Export Citation
  • Foster PG et al. (2017) Phylogeny of Anophelinae using mitochondrial protein coding genes. R. Soc. Open Sci. 4(11), 170758.

  • Gagnon AS, Smoyer-Tomic KE and Bush AB (2002) The El Niño southern oscillation and malaria epidemics in South America. International Journal of Biometeorology, 46, 8189.

    • Search Google Scholar
    • Export Citation
  • Galardo AKR, Zimmerman R and Galardo CD (2013) Larval control of Anopheles (Nyssorhinchus) darlingi using granular formulation of Bacillus sphaericus in abandoned gold-miners excavation pools in the Brazilian Amazon rainforest. Revista da Sociedade Brasileira de Medicina Tropical, 46, 172177.

    • Search Google Scholar
    • Export Citation
  • Galardo AKR, Zimmerman R, Lounibos LP, Young L, Galardo C, Arruda M and D’almeida C (2009) Seasonal abundance of Anopheline mosquitoes and their association with rainfall and malaria along the Matapi River, Amapi, Brazil. Medical and veterinary entomology, 23, 335349.

    • Search Google Scholar
    • Export Citation
  • Garg T (2019) Ecosystems and human health: The local benefits of forest cover in Indonesia. Journal of Environmental Economics and Management, 98, 102271.

    • Search Google Scholar
    • Export Citation
  • Geist HJ and Lambin EF (2002) Proximate causes and underlying driving forces of tropical deforestation tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience, 52, 143150.

    • Search Google Scholar
    • Export Citation
  • Gething PW, Van Boeckel TP, Smith DL, Guerra CA, Patil AP, Snow RW and Hay SI (2011) Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasites and vectors, 4, 111.

    • Search Google Scholar
    • Export Citation
  • Goddard J (2018) Mosquito-borne diseases. In: Infectious Diseases and Arthropods. Infectious Disease. Humana Press, Cham, Switzerland. https://doi.org/10.1007/978-3-319-75874-9_3.

    • Search Google Scholar
    • Export Citation
  • Gomes VHF, Vieira ICG, Salomão RP et al. (2019) Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Chang. 9, 547553. https://doi.org/10.1038/s41558-019-0500-2.

    • Search Google Scholar
    • Export Citation
  • Gomes MF, Codeço CT, Bastos LS, Lana RM (2020) Measuring the contribution of human mobility to malaria persistence. Malaria journal, 19(1), 112.

    • Search Google Scholar
    • Export Citation
  • Gutierrez-Cori O, Espinoza JC, Li L, Wongchuig S, Arias P, Ronchail J and Segura H (2021) On the hydroclimate-vegetation relationship in the southwestern Amazon during the 2000–2019 period. Frontiers in Water, 3, 648499.

    • Search Google Scholar
    • Export Citation
  • Hansen MC, Stehman SV, Potapov P, Loveland TR, Townshend JRG, et al. (2008) Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proc Natl Acad Sci 105: 94399444.

    • Search Google Scholar
    • Export Citation
  • Hansen J, Ruedy R, Sato M and Lo K (2010) Global surface temperature change. Reviews of Geophysics, 48.

  • Hay SI et al. (2017) Global, regional, and national disability-adjusted life-years (DALY s) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet, v. 390, n. 10100, p. 12601344.

    • Search Google Scholar
    • Export Citation
  • Helldén D, Andersson C, Nilsson M, Ebi KL, Friberg P, Alfvén T (2021) Climate change and child health: a scoping review and an expanded conceptual framework. Lancet Planet Health; 5: e164e175.

    • Search Google Scholar
    • Export Citation
  • Hiwat H and Bretas G (2011) Ecology of Anopheles darlingi Root with respect to vector importance: a review. Parasites and vectors, 4, 177.

    • Search Google Scholar
    • Export Citation
  • Houghton RA, Byers B Nassikas AA (2015) A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Change 5, 10221023.

  • Howard MJ, Brillman JC and Burkle FM (1996) Infectious disease emergencies in disasters. Emergency Medicine Clinics, 14(2), 413428.

    • Search Google Scholar
    • Export Citation
  • Huntington HP, Begossi A, Gearheard SF, Kersey B, Loring PA, Mustonen T, Paudel PK, Silvano RA and Vave R (2017) How small communities respond to environmental change: patterns from tropical to polar ecosystems. Ecology and Society, 22.

    • Search Google Scholar
    • Export Citation
  • Ikeda T, Behera SK, Morioka Y, Minakawa N, Hashizume M, Tsuzuki A et al. (2017) Seasonally lagged effects of climatic factors on malaria incidence in South Africa. Scientific reports, 7(1), 19.

    • Search Google Scholar
    • Export Citation
  • IPCC – Intergovernmental Panel on Climate Change (2013) Climate change 2013: The Physical Science Basis.

  • IPCC – Intergovernmental Panel on Climate Change (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change., Cambridge University Press.

  • IPCC – Intergovernmental Panel on Climate Change (2014) Summary for policy makers In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ed CB Field et al. (Cambridge) (Cambridge University Press) (Cambridge, United Kingdom and New York, NY, USA) pp. 132.

    • Search Google Scholar
    • Export Citation
  • IPCC – Intergovernmental Panel on Climate Change (2022a) Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. Climate Change 2022 Impacts, Adaptation and Vulnerability. Working Group II Technical Support Unit, Final Draft unpublished. Available at: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf.

    • Search Google Scholar
    • Export Citation
  • IPCC – Intergovernmental Panel on Climate Change (2022b) Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Technical Summary, Final Draft unpublished. Available at: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_TechnicalSummary.pdf.

    • Search Google Scholar
    • Export Citation
  • Kingsolver JG, Woods H, Buckley LB, Potter KA, Maclean HJ and Higgins JK (2011) Complex life cycles and the responses of insects to climate change. Oxford University Press.

    • Search Google Scholar
    • Export Citation
  • Koenraadt CJM, Githeko AK, Takken W (2004) The effects of rainfall and evapotranspiration on the temporal dynamics of Anopheles gambiae ss and Anopheles arabiensis in a Kenyan village. Acta tropica, 90(2), 141153.

    • Search Google Scholar
    • Export Citation
  • Kouadio IK, Aljunid S, Kamigaki T, Hammad K, Oshitani H (2012) Infectious diseases following natural disasters: prevention and control measures. Expert Rev Anti Infect Ther 10(1): 95104, https://doi.org/10.1586/eri.11.155.

    • Search Google Scholar
    • Export Citation
  • Kruid S, Macedo MN., Gorelik SR., Walker W, Moutinho P, Brando PM., Castanho A, Alencar A, Baccini A, Coe MT (2021) Beyond deforestation: carbon emissions from land grabbing and forest degradation in the Brazilian Amazon. Frontiers in Forests and Global Change. Vol. 4.

    • Search Google Scholar
    • Export Citation
  • Johansen IC, Rodrigues PT, Ferreira MU (2020) Human mobility and urban malaria risk in the main transmission hotspot of Amazonian Brazil. PloS one, 15(11), e0242357.

    • Search Google Scholar
    • Export Citation
  • Lambin EF and Geist HJ (2008). Land-use and land-cover change: local processes and global impacts. Springer Science & Business Media.

  • Laporta GZ, Linton YM, Wilkerson RC, Bergo ES, Nagaki SS, Sant’Ana DC, Sallum MAM (2015). Malaria vectors in South America: current and future scenarios. Parasites & vectors, 8(1), 113.

    • Search Google Scholar
    • Export Citation
  • Laporta GZ (2019) Amazonian rainforest loss and declining malaria burden in Brazil. The Lancet Planetary Health vol. 3 e4e5.

  • Laporta GZ, Ilacqua RC, Bergo ES, Chaves LSM, Rodovalho SR, Moresco GG, Figueira EA, Massad E, De Oliveira TM and Bickersmith SA (2021) Malaria transmission in landscapes with varying deforestation levels and timelines in the Amazon: a longitudinal spatiotemporal study. Scientific Reports, 11, 114.

    • Search Google Scholar
    • Export Citation
  • Latrubesse EM, Arima EY, Dunne T, Park E, Baker V, D’horta F, et al. (2017) Damming the rivers of the Amazon Basin. Nature, 546, 363369. https://doi.org/10.1038/nature22333.

    • Search Google Scholar
    • Export Citation
  • Leaning J and Guha-Sapir D (2013) Natural disasters, armed conflict, and public health. New England journal of medicine, 369, 18361842.

    • Search Google Scholar
    • Export Citation
  • Liu EK, He WQ, Yan CR (2014) ‘White revolution’ to ‘white pollution’ – agricultural plastic film mulch in China. Environmental Research Letters, 9(9): 091001.

    • Search Google Scholar
    • Export Citation
  • Lovejoy TE and Nobre C (2019) Amazon tipping point: last chance for action. Sci. Adv. 5, eaba2949.

  • Lowe R et al. (2021) Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. The Lancet Planetary Health, 5(4): e209e219.

    • Search Google Scholar
    • Export Citation
  • Maezumi SY et al. (2022) Legacies of Indigenous land use and cultural burning in the Bolivian Amazon rainforest ecotone. Phil. Trans. R. Soc. B 377, 20200499. https://doi.org/10.1098/rstb.2020.0499.

    • Search Google Scholar
    • Export Citation
  • Macdonald AJ and Mordecai EA (2019) Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proceedings of the National Academy of Sciences, 116, 2221222218.

    • Search Google Scholar
    • Export Citation
  • Manguin S, Kengne P, Sonnier L, Harbach RE, Baimai V, Trung HD and Coosemans M (2002) SCAR markers and multiplex PCR‐based identification of isomorphic species in the Anopheles dirus complex in Southeast Asia. Medical and Veterinary Entomology, 16, 4654.

    • Search Google Scholar
    • Export Citation
  • Mapbiomas Amazonía (2022) Colección v3.0 de la Serie Anual de Mapas de Cobertura y Uso del Suelo de la Amazonía, adquirido en April 2022 a través del enlace: https://amazonia.mapbiomas.org/.

    • Search Google Scholar
    • Export Citation
  • Mariana S and Mashida R (2020) Coinciding crises: how COVID-19 and climate change are putting pressure on health systems worldwide – and how we can prepare for the future. UNDP. November 2, 2020.

    • Search Google Scholar
    • Export Citation
  • Marengo JA, Tomasella J, Alves LM, Soares WR and Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophysical research letters, 38.

    • Search Google Scholar
    • Export Citation
  • MEA (2005) Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute. Island Press, Washington D.C.

  • Meremikwu MM, Asindi AA and Ezedinachi E (1997) The patternof neurological sequelae of childhood cererbral malaria amongsurvivors in Calabar, Nigeria. The Central African Journal of Medicine 43, 231234.

    • Search Google Scholar
    • Export Citation
  • Metzger JP, Bustamante M, Ferreira J (2019) Por que o Brasil precisa de suas reservas legais. Perspectives in Ecology and Conservation. Rio de Janeiro, v. 17, n. 3, p. 104116, Julho–Setembro.

    • Search Google Scholar
    • Export Citation
  • Ministério da Saúde. Brasil. Sistema de Informação de Agravos de Notificação – fonte de dados do Sivep-Malária e do Sinan. Availablet at: https://public.tableau.com/app/profile/mal.ria.brasil/viz/Dadosparacidado_201925_03_2020/Incio.

    • Search Google Scholar
    • Export Citation
  • Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T, De Moor E, Mcnally A, Pawar S, Ryan SJ, Smith TC, Lafferty KD (2013) Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol Lett, Jan;16(1): 2230. https://doi.org/10.1111/ele.12015.

    • Search Google Scholar
    • Export Citation
  • Moura MM, Dos Santos AR, Pezzopane JEM, Alexandre RS, Da Silva SF, Pimentel S M, De Andrade MSS, Silva FGR, Branco ERF and Moreira TR (2019) Relation of El Niño and La Niña phenomena to precipitation, evapotranspiration and temperature in the Amazon basin. Science of The Total Environment, 651, 16391651.

    • Search Google Scholar
    • Export Citation
  • Munang R, Thiaw I, Alverson K, Liu J and Han Z (2013) The role of ecosystem services in climate change adaptation and disaster risk reduction. Current Opinion in Environmental Sustainability, 5, 4752.

    • Search Google Scholar
    • Export Citation
  • Nishijima M, Rocha FF (2020) An economic investigation of the dengue incidence as a result of a tailings dam accident in Brazil. J Environ Manage. Jan 1;253:109748. https://doi.org/10.1016/j.jenvman.2019.109748.

    • Search Google Scholar
    • Export Citation
  • Nobre P, Malagutti M, Urbano DF, De Almeida RA and Giarolla E (2009) Amazon deforestation and climate change in a coupled model simulation. Journal of Climate 22.21: 56865697.

    • Search Google Scholar
    • Export Citation
  • Nobre CA, Sampaio G, Borma LS, Castilla-Rubio JC, Silva JS and Cardoso M (2016) Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences, 113, 1075910768.

    • Search Google Scholar
    • Export Citation
  • Norris DE (2004) Mosquito-borne diseases as a consequence of land use change. EcoHealth, 1, 1924.

  • Ogar E, Pecl G and Mustonen T (2020) Science must embrace traditional and indigenous knowledge to solve our biodiversity crisis. One Earth, 3, 162165.

    • Search Google Scholar
    • Export Citation
  • Oliveira PTM (2022) Violação das terras indígenas pelo aumento da mineração ilegal na Amazonia e a atuação do Ministério Público Federal. Conference presentation of the Public Prosecutor’s Office at Pará, Brazil.

  • Oliveira-Ferreira J, Lacerda MV, Brasil P, Ladislau JL, Tauil PL and Daniel-Ribeiro CT (2010) Malaria in Brazil: an overview. Malaria journal, 9, 115.

    • Search Google Scholar
    • Export Citation
  • Orellana JDY, Marrero L, Alves CM, Ruiz CM, De Hacon SS, Oliveira WO, Basta P (2017) Associação de Baixa Estatura Severa Em Crianças Indígenas Yanomami Com Baixa Estatura Materna: Indícios de Transmissão Intergeracional.

  • Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF and Thomas MB (2010) Influence of climate on malaria transmission depends on daily temperature variation. Proceedings of the National Academy of Sciences, 107(34), 1513515139.

    • Search Google Scholar
    • Export Citation
  • Paca VHDM, Espinoza-Dávalos GE, Moreira DM, Comair G (2020) Variability of trends in precipitation across the Amazon River basin determined from the CHIRPS precipitation product and from station records. Water, 12(5), 1244.

    • Search Google Scholar
    • Export Citation
  • Parekh FK et al. (2020) Infectious disease risks and vulnerabilities in the aftermath of an environmental disaster in Minas Gerais, Brazil. Vector-Borne and Zoonotic Diseases 20.5: 387389.

    • Search Google Scholar
    • Export Citation
  • Pan W, Carr D, Barbieri A, Bilsborrow R, Suchindran C (2007) Forest clearing in the Ecuadorian Amazon: a study of patterns over space and time. Population Research and Policy Review, 26(5), 635659.

    • Search Google Scholar
    • Export Citation
  • Pan W, Branch O and Zaitchik B (2014) Impact of climate change on vector-borne disease in the Amazon. Global Climate Change and Public Health, E.K. Pinkerton and N.W. Rom, (eds) Springer, pp. 193210. https://doi.org/10.1007/978-1-4614-8417-2_11.

    • Search Google Scholar
    • Export Citation
  • Parham PE and Michael E (2010) Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620626.

    • Search Google Scholar
    • Export Citation
  • Peiter PC, Franco VC, Gracie R, Xavier DR, Suárez-Mutis MC (2013) Situação da malária na tríplice fronteira entre Brasil, Colômbia e Peru. Cad. Saúde Pública; 29(12): 24972512. https://doi.org/10.1590/0102-311X00042213.

    • Search Google Scholar
    • Export Citation
  • Pellegrini AFA et al. (2018) Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, v. 553, n. 7687, p. 194198.

    • Search Google Scholar
    • Export Citation
  • Pellegrini AFA et al. (2021) Decadal changes in fire frequencies shift tree communities and functional traits. Nature Ecology and Evolution, v. 5, n. 4, p. 504512.

    • Search Google Scholar
    • Export Citation
  • Pivello VR, Vieira I, Christianini AV, Ribeiro DB, Da Silva Menezes L, Berlinck CN, Melo FP, Marengo JA, Tornquist CG, Tomas WM et al. (2021) Understanding Brazil’s catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspect. Ecol. Conserv. 2021, 19, 233255.

    • Search Google Scholar
    • Export Citation
  • Port Lourenço AE, Santos VR, Orellana JD, Coimbra Jr CE (2008) Nutrition transition in Amazonia: obesity and socioeconomic change in the Suruí Indians from Brazil. American Journal of Human Biology: The Official Journal of the Human Biology Association, 20(5), 564571.

    • Search Google Scholar
    • Export Citation
  • Prasad AS and Francescutti LH (2017) Natural Disasters. International Encyclopedia of Public Health, 215222. https://doi.org/10.1016/B978-0-12-803678-5.00519-1.

    • Search Google Scholar
    • Export Citation
  • Puig H (2001) La forêt tropicale humide, Paris: Berlin.

  • Qualls WA and Breidenbaugh MS (2020) Texas mosquito control response following Hurricane Harvey. Journal of the American Mosquito Control Association, 36, 6167.

    • Search Google Scholar
    • Export Citation
  • RAISG – Rede Amazônica de Informação Socioambiental Georreferenciada (2022) Available at: https://www.amazoniasocioambiental.org/.

  • Raju E, Boyd E and Otto F (2022) Stop blaming the climate for disasters. Commun Earth Environ 3, 1. https://doi.org/10.1038/s43247-021-00332-2.

    • Search Google Scholar
    • Export Citation
  • Recht J, Siqueira AM, Monteiro WM, Herrera SM, Herrera S and Lacerda MV (2017) Malaria in Brazil, Colombia, Peru and Venezuela: current challenges in malaria control and elimination. Malaria journal, 16(1), 118.

    • Search Google Scholar
    • Export Citation
  • Rentschler J and Salhab M (2020) People in harm’s way: Flood exposure and poverty in 189 countries, The World Bank.

  • Reiter P (2001) Climate change and mosquito-borne disease. Environmental Health Perspectives; 109:141161.

  • Richards PD, Walker RT and Arima EY (2014) Spatially complex land change: The Indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob Environ Change, 29, 19.

    • Search Google Scholar
    • Export Citation
  • Rodrigues PT, Valdivia HO, De Oliveira TC, Alves JMP, Duarte AMR, Cerutti-Junior C, Buery JC, Brito CF, De Souza JC and Hirano Z (2018) Human migration and the spread of malaria parasites to the New World. Scientific reports, 8, 113.

    • Search Google Scholar
    • Export Citation
  • Rufalco-Moutinho P, Moura KS, Peres AD, Moreno M, Carrasco-Escobar G, Prussing C, Gamboa D, Vinetz JM, Sallum MAM and Conn JE (2021) Ecology and larval population dynamics of the primary malaria vector Nyssorhynchus darlingi in a high transmission setting dominated by fish farming in western Amazonian Brazil. PloS one, 16, e0246215.

    • Search Google Scholar
    • Export Citation
  • Rufalco-Moutinho P, Schweigmann N, Bergamaschi DP and Sallum MAM (2016) Larval habitats of Anopheles species in a rural settlement on the malaria frontier of southwest Amazon, Brazil. Acta tropica, 164, 243258.

    • Search Google Scholar
    • Export Citation
  • Sanchez JF, Carnero AM, Rivera E, Rosales LA, Baldeviano GC, Asencios JL, Edgel KA, Vinetz JM and Lescano AG (2017) Unstable malaria transmission in the southern Peruvian Amazon and its association with gold mining, Madre de Dios, 2001–2012. Am J Trop Med Hyg 96: 304311.

    • Search Google Scholar
    • Export Citation
  • Sanchez-Ribas J, Parra-Henao G and Guimarães (2012) Impact of dams and irrigation schemes in Anopheline (Diptera: Culicidae) bionomics and malaria epidemiology. Revista do Instituto de Medicina Tropical de São Paulo, 54, 179191.

    • Search Google Scholar
    • Export Citation
  • Seneviratne S et al. (2021) in Climate Change 2021: The Physical Science Basis. 48 Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate 49 Change (eds Masson-Delmotte, V et al.) Ch. 11 (Cambridge University Press, 2021).

    • Search Google Scholar
    • Export Citation
  • Song, XP, Hansen MC, Stehman SV et al. (2018) Global land change from 1982 to 2016. Nature 560, 639643. https://doi.org/10.1038/s41586-018-0411-9.

    • Search Google Scholar
    • Export Citation
  • Soares GLH, Mello CF, Silva JDS, Oliveira JDS, Silva FSO, Rodríguez-Planes L, Da Costa FM and Alencar J (2021) Evaluation of Mansonia spp. Infestation on Aquatic Plants in Lentic and Lotic Environments of the Madeira River Basin in Porto Velho, Rondônia, Brazil. Journal of the American Mosquito Control Association, 37, 143151.

    • Search Google Scholar
    • Export Citation
  • Souza PF, Xavier DR, Suarez Mutis MC, Da Mota JC, Peiter PC, De Matos VP, et al. (2019) Spatial spread of malaria and economic frontier expansion in the Brazilian Amazon. PLoS ONE 14 (6): e0217615. https://doi.org/10.1371/journal.pone.0217615.

    • Search Google Scholar
    • Export Citation
  • SPA – Science Panel for the Amazon. Amaz (2021) Assess. Rep. 2021. U. Nations Sustain. Dev. Solut. Netw., N.Y., p. 48.

  • Sánchez-Ribas J, Oliveira-Ferreira J, Rosa-Freitas MG, Trilla L and Silva-Do-Nascimento TF (2015) New classification of natural breeding habitats for Neotropical anophelines in the Yanomami Indian Reserve, Amazon Region, Brazil and a new larval sampling methodology. Memórias do Instituto Oswaldo Cruz, 110, 760770.

    • Search Google Scholar
    • Export Citation
  • Sawyer DR (1999). Deforestation and malaria on the Amazon frontier. In Bilsborrow, R.E., and Hogan, D. (eds.), Population and Deforestation in the Humid Tropics, IUSSP, Liége, 1999, pp. 268291.

    • Search Google Scholar
    • Export Citation
  • Tapajós R, Castro D, Melo G, Balogun S, James M, Pessoa R, Almeida A, Costa M, Pinto R and Albuquerque B (2019) Malaria impact on cognitive function of children in a peri-urban community in the Brazilian Amazon. Malaria Journal, 18, 112.

    • Search Google Scholar
    • Export Citation
  • Tucker Lima JM, Vittor A, RIFAI S, Valle D (2017) Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence. Philos Trans R Soc Lond B Biol Sci; 372: 20160125.

    • Search Google Scholar
    • Export Citation
  • Ueno TMRL, Lima LNGC, Sardinha DM, Rodrigues YC, Souza HUS, Teixeira PR, et al. (2021) Socio-epidemiological features and spatial distribution of malaria in an area under mining activity in the Brazilian Amazon Region. Int J Environ Res Public Health;18:10384.

    • Search Google Scholar
    • Export Citation
  • UNISDR – United Nations International Strategy for Disaster Reduction (2004) Living with Risk: A Global Review of Disaster Reduction Initiatives. United Nations, Geneva, Switzerland.

    • Search Google Scholar
    • Export Citation
  • UNISDR – United Nations International Strategy for Disaster Reduction (2011) Killer year caps deadly decade – reducing disaster impact is ‘Critical’ says top UN disaster official. United Nations, Geneva, Switzerland.

    • Search Google Scholar
    • Export Citation
  • UNDRR – United Nations Office for Disaster Risk Reduction (2022) Available at: https://www.preventionweb.net/understanding-disaster-risk.

  • Van Bortel W, Trung H, Roelants P, Harbach R, Backeljau T and Coosemans M (2000) Molecular identification of Anopheles minimus sl beyond distinguishing the members of the species complex. Insect Molecular Biology, 9, 335340.

    • Search Google Scholar
    • Export Citation
  • Van Lieshout M, Kovats RS, Livermore MTJ, Martens P (2004) Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Global environmental change, 14(1), 8799.

    • Search Google Scholar
    • Export Citation
  • Vittor AY et al. (2006) The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 74, 311.

    • Search Google Scholar
    • Export Citation
  • Walker WS, et al. (2020) The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proceedings of the National Academy of Sciences, v. 117, n. 6, p. 30153025.

    • Search Google Scholar
    • Export Citation
  • Watts N, Amann M, Arnell N, et al. (2019) The 2019 report of The Lancet. Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet 394: 18361878.

    • Search Google Scholar
    • Export Citation
  • Vezenegho SB, Carinci R, Gaborit P, Issaly J, Dusfour I, Briolant S, Girod R (2015) Anopheles darlingi (Diptera: Culicidae) dynamics in relation to meteorological data in a cattle farm located in the coastal region of French Guiana: advantage of Mosquito Magnet trap. Environmental entomology, 44(3), 454462.

    • Search Google Scholar
    • Export Citation
  • WHO – World Health Organization (2014) Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s.

    • Search Google Scholar
    • Export Citation
  • WHO – World Health Organization (2021) World malaria report 2021. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO. Available at: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021.

    • Search Google Scholar
    • Export Citation
  • WHO – World Health Organization (2021) State of the global climate 2020. World Meteorological Organization Geneva, Switzerland.

  • Williams HA, Bloland PB, Council NR and Population CO (2003) Malaria control during mass population movements and natural disasters.

  • Wisner B, Gaillard JC and Kelman I (2012) Framing disaster: theories and storiesseeking to understand Hazards, vulnerability and risk. Handbook Hazards Disaster Risk Reduct, 1st ed., 1834, Routledge, London.

    • Search Google Scholar
    • Export Citation
  • WMO – World Meteorological Organization. State of the global climate 2020. World Meteorological Organization Geneva, Switzerland, 2021.

    • Search Google Scholar
    • Export Citation
  • WMO – World Meteorological Organziation. WMO atlas of mortality and economic losses from weather, climate and water extremes (1970–2019), 2021.

    • Search Google Scholar
    • Export Citation
  • World Bank (2021) World development report 2021: Data for better lives. The World Bank.

  • Worrall E, Basu S, Hanson K (2005) Is malaria a disease of poverty? A review of the literature. Trop Med Int Health 10(1): 10471059. 10.1111/j.1365-3156.2005.01476.x.

    • Search Google Scholar
    • Export Citation
  • Zhongming Z, Wei L (2021) Climate and weather related disasters surge five-fold over 50 years, but early warnings save lives – WMO report.

Metrics

All Time Past 365 days Past 30 Days
Abstract Views 601 302 28
Full Text Views 12 10 0
PDF Views & Downloads 19 14 0