Purchase instant access (PDF download and unlimited online access):
Arboviruses are a major challenge for Public Health in the world. A relationship established between society such climate change and the ecological capacity for occupy different niches by vectors, particularly mosquitoes, make arboviruses increasingly objects of study that seek to minimize the impact of these diseases on society. Among the main aspects observed, the unplanned urbanization, the demographic growth, the environmental degradation, the low effectiveness and the discontinuity public policies are fundamental issues to face this serious public health problem. The arboviruses outbreaks that occurred in the last decade related to the geographic expansion of the occurrence of mosquitoes, the existence of etiological agents and susceptible vertebrate hosts. Some of these arboviruses are more relevant due to the impact on the health of communities, as well as the indirect, social and economic costs that result from infections. Among these arboviruses, we can highlight Dengue, Zika, Chikungunya, Yellow fever and West Nile fever. Understand the factors that determine the transmission of these arboviruses requires the use of spatial analysis tools and the monitoring the existing environmental variables. That way, the continuous study of the bioecology of the vectors produces the essential knowledge to map areas risk, contributing to the construction of effective surveillance and control programs.
Abe KC, Georges S and Miraglia EK (2018) Incidência de dengue e custos associados, nos períodos anterior (2000–2008) e posterior (2009–2013) à construção das usinas hidrelétricas em Rondônia. Epidemiologia e Serviços em Saúde. 27(2): e2017232. https://doi.org/10.5123/S1679-49742018000200012.
Artsob H, Lindsay R and Drebot M (2017) Arboviruses, International Encyclopedia of Public Health. Editor(s): Stella R. Quah, Academic Press. 2nd Edit. p: 154–160. https://doi.org/10.1016/B978-0-12-803678-5.00023-0, 2017.
Acharya BK, Cao C, Xu M, Khanal L, Naeem S and Pandit S (2018) Temporal variations and associated remotely sensed environmental variables of dengue fever in Chitwan District, Nepal. International Journal of Geo-Information. 7(7): e275. https://doi.org/10.3390/ijgi7070275.
Azevedo TS, Lorenz C and Chiaravalloti-Neto F (2020) Spatiotemporal evolution of dengue outbreaks in Brazil. Royal Society of Tropical Medicine and Hygiene. 114(8): 593–602. https://doi.org/10.1093/trstmh/tra030.
Azevedo TS, Bourke BP, Piovezan R and Sallum MAM (2018) The influence of urban heat islands and socioeconomic factors on the spatial distribution of Aedes aegypti larval habitats. Geospatial Health. 13: 179–187. https://doi.org/10.4081/gh.2018.623.
Beatty ME, Beutels P, Meltzer MI, Shepard DS, Hombach J, Hutubessy R, Dessis D, Coudeville L, Dervaux B, Wichmann O, Margolis HS and Kuritsky JN (2011) Health Economics of Dengue: A systematic literature review and expert panel’s assessment. American Journal of Tropical Medicine and Hygiene. 84(3): 473–488. https://doi.org/10.4269/ajtmh.2011.10-0521.
Benitez EM, Ludueña-Almeida F, Frías-Céspedes M, Almirón WR and Estallo EL (2019) Could land cover influence Aedes aegypti mosquito populations? Medical and Veterinary Entomology. 34: 138–144. https://doi.org/10.1111/mve.12422.
Brasil (2002) Ministério da Saúde, Fundação Nacional de Saúde (FUNASA). Programa Nacional de Controle da Dengue (PNCD). Brasília: FUNASA.
Brasil (2011) Guia de Vigilância do Culex quinquefasciatus. Brasília: Ministério da Saúde: Secretaria de Vigilância em Saúde. 1st edit. 76p.
Brasil (2016) Boletim Epidemiológico. Secretaria de Vigilância em Saúde – Ministério da Saúde. Volume 47 no. 3. Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 52, 2015. Available at: https://antigo.saude.gov.br/images/pdf/2016/janeiro/15/svs2016-be003-dengue-se52.pdf.
Brasil (2017) Boletim Epidemiológico. Secretaria de Vigilância em Saúde – Ministério da Saúde. Volume 48 no. 3. Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 52, 2016. Available at: https://antigo.saude.gov.br/images/pdf/2017/abril/06/2017-002-Monitoramento-dos-casos-de-dengue--febre-de-chikungunya-e-febre-pelo-v--rus-Zika-ate-a-Semana-Epidemiologica-52--2016.pdf.
Brasil (2018) Boletim Epidemiológico. Secretaria de Vigilância em Saúde – Ministério da Saúde. Volume 49 no. 2. Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 52, 2017. Available: at https://antigo.saude.gov.br/images/pdf/2018/janeiro/23/Boletim-2018-001-Dengue.pdf.
Brasil (2019) Boletim Epidemiológico. Secretaria de Vigilância em Saúde – Ministério da Saúde. Volume 50 no. 4. Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 52, 2018. Available at: https://antigo.saude.gov.br/images/pdf/2019/janeiro/28/2019-002.pdf.
Brasil (2020) Boletim Epidemiológico. Secretaria de Vigilância em Saúde – Ministério da Saúde. Volume 51 no. 2. Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 52, 2019. Available at: https://antigo.saude.gov.br/images/pdf/2020/janeiro/20/Boletim-epidemiologico-SVS-02-1-.pdf.
Brasil (2021a) Boletim Epidemiológico. Secretaria de Vigilância em Saúde – Ministério da Saúde. Volume 51 no. 33. Óbito por arboviroses no Brasil de 2008–2019. Available at: https://antigo.saude.gov.br/images/pdf/2020/August/21/Boletim-epidemiologico-SVS-33.pdf.
Brasil (2021b) Boletim Epidemiológico. Secretaria de Vigilância em Saúde – Ministério da Saúde. Volume 52 no. 3. Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 52, 2020. Available at: https://www.gov.br/saude/pt-br/assuntos/media/pdf/2021/fevereiro/01/boletim_epidemiologico_svs_3.pdf.
Brasil (2022a) Boletim Epidemiológico. Secretaria de Vigilância em Saúde – Ministério da Saúde. Volume 53 no. 1. Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 23, 2021. Available at: https://www.gov.br/saude/pt-br/media/pdf/2021/junho/21/boletim_epidemiologico_svs_23.pdf.
Brasil (2022b) Boletim Epidemiológico. Secretaria de Vigilância em Saúde – Ministério da Saúde. Volume 52 no. 4. Situação epidemiológica da síndrome congênita associada à infecção pelo vírus Zika: Brasil, 2015 a 2021. Available at: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/boletins-epidemiologicos/edicoes/2021/boletim_epidemiologico_svs_4.pdf.
Brennan SA, Grob IC, Bartz CE, Baker JK and Jiang Y (2021) Displacement of Aedes albopictus by Aedes aegypti in gainesville, Florida. Journal of the American Mosquito Control Association. 37(2):93–97. https://doi.org/10.2987/20-6992.1.
Brusca RC and Brusca GJ (2007) Invertebrados. Rio de Janeiro: Guanabara Hoogan 2nd edit. 968 p.
Caldwell JM, Labeaud AD, Lambin EF, Stewart-Ibarra AM, Ndenga BA, Mutuku FM, Amy R, Krystosik AR, Ayala EB, Anyamba A, Borbor-Cordova MJ, Damoah R, Grossi-Soyster EM, Heras FH, Ngugi HN, Ryan SJ, Shah MM, Sippy R and Mordecai EA (2021) Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents. Nature Communications. 12: e1233. https://doi.org/10.1038/s41467-021-21496-7.
Câmara FP, Theophilo RLG, Santos GT, Pereira SRFG, Camara DC and Matos RRC (2007) Estudo retrospectivo (histórico) da dengue no Brasil: características regionais e dinâmicas. Revista da Sociedade Brasileira de Medicina Tropical. 40 (2): 92–96.
Catão RC (2012) Dengue no Brasil: abordagem na escala nacional. São Paulo: Cultura Acadêmica. 1st edit. 75p.
Carrasco LR, Lee LK, Lee VJ, Ooi EE, Shepard DS, Thein TL, Gan V, Cook AR, Lye D, Ching N and Leo YS (2011) Economic Impact of Dengue Illness and the Cost-Effectiveness of Future Vaccination Programs in Singapore. Plos Neglected Tropical Diseases. 5(12): e1426. https://doi.org/0.37/journal.pntd.000426.
Ciota AT, Matachiero AC, Kilpatrick AM and Kramer LD (2014) The effect of temperature on life history traits of Culex mosquitoes. Journal of Medical Entomological. 51(1): 55–62. https://doi.org/10.1603/me13003.
Clements AN (1999) The biology of mosquitoes. Volume 2: sensory reception and behaviour. ISBN: 9780851993133, CABI Publishing, Wallingford, UK, 740p.
Coelho CAS, Cardoso DHF and Firpo MAF (2015) Precipitation diagnostics of a exceptionally dry event in São Paulo, Brazil. Theoretical and Applied Climatology. 125:769–778. https://doi.org/10.1007/s00704-015-1540-9.
Coelho CAS, Oliveira CP, Ambrizzi T, Reboita MS, Carpenedo CB, Campos JLPS, Tomaziello CAN, Pampuch LA, Custódio MS, Dutra LMM and Da Roocha RP (2016) The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Climate Dynamics. 46: 3737–3752. https://doi.org/10.1007/s00382-015-2800-1.
Consoli RAGB and Lourenço-De-Oliveira R (1994) Principais mosquitos de importância sanitária no Brasil. Rio de Janeiro, FIOCRUZ, Rio de Janeiro: FIOCRUZ. 1st edit. 228p.
Consoli RAGB, Guimarães CT, Souza CP and Santos BS (1984) Atividade predatória de Helobdella triserialis lineata (Hirudinea: Glossiphonidae) sobre formas imaturas de Aedes fluviatilis e Culex quinquefasciatus (Diptera: Culicidae) em laboratório. Revista de Saúde Pública. 18 (5): 359–366.
Constenla D, Garcia C and Lefcourt N (2015) Assessing the Economics of Dengue: Results from a systematic review of the literature and expert survey. Pharmaco Economic. 33: 1107–1135. https://doi.org/0.007/s40273-05-0294-7.
Crawford JE, Alves JM, Palmer WJ, Day JP, Sylla M, Ramasamy R, Surendran SN, Black WC, Pain A and Jiggins FM (2017) Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector. BMC Biology. 15(1): e16. https://doi.org/0.86/s295-07-035-0.
Crespo RJ and Rogers RE (2022) Habitat segregation patterns of container breeding mosquitos: the role of urban heat island, vegetation cover, and income disparity in cemeteries of New Orleans. International Journal of Environmental Research and Public Health. 19(1): e245. https://doi.org/0.3390/ijerph900245.
Cunha MC, Ju Y, Morais MHF, Dronova I, Ribeiro SP, Bruhn RP, Lima LL, Sales DM, Schultes OL, Rodriguez DA and Caiaffa WT (2021) Disentangling associations between vegetation greenness and dengue in a Latin American city: Findings and challenges. Landscape and Urban Planning. 216: 104255. https://doi.org/0.06/j.landurbplan.202.04255.
Damos P and Caballero P (2021) Detecting seasonal transient correlations between populations of the West Nile virus vector Culex sp. and temperatures with wavelet coherence analysis. Ecological Informatics 61: e101216. https://doi.org/10.1016/j.ecoinf.2021.101216.
Dick WA, Kitchen SF and Haddow AJ (1952) Zika Virus (I). Isolations and serological specificity. Transactions of The Royal Society of Tropical Medicine and Hygiene. 46 (5): 509–520. https://doi.org/10.1016/0035-9203(52)90042-4.
Donalísio MR and Glasser CM (2002) Vigilância Entomológica e controle de vetores do dengue. Revista Brasileira de Epidemiologia. 5 (3): 259–272.
Estallo EL, Sangermani F, Grech M, Ludueña-Almeida FM, Frías-Cespedes M, Ainete M, Almirón W and Livdahl T (2018) Modelling the distribution of the vector Aedes aegypti in a central Argentine city. Journal of Medical Entomology. 32 (4): 451–461. https://doi.org/0./mve.2323.
Farajollahi A, Fonseca DM, Kramer LD and Kilpatrick AM (2011) ‘Bird biting’ mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infection, Genetics and Evolution. 11 (7): 1577–1585. https://doi.org/10.1016/j.meegid.2011.08.013.
Fischer S and Schweigmann N (2004) Culex mosquitoes in temporary urban rain pools: seasonal dynamics and relation to environmental variables. Journal of Vector Ecology. 29 (2): 365–373.
Flaibani N, Pérez AA, Barbero IM and Burroni NE (2020) Different approaches to characterize artificial breeding sites of Aedes aegypti using generalized linear mixed models. Infectious Diseases of Poverty. 9 (1): 107. https://doi.org/0.86/s40249-020-00705-3.
Forattini OP (2002) Culicidologia Médica. Vol 2, São Paulo, Edusp. 864.
Gomes AC (2002) Vigilância Entomológica. Informe Epidemiológico do SUS. 11 (2): 79–90.
Gomes AC and Forattini OP (1990) Abrigos de mosquitos Culex (Culex) em zona Rural (Diptera: Culicidae). Revista de Saúde Pública. 24 (5): 394–397. https://doi.org/10.1590/S0034-89101990000500007.
Gullan PJ and Cranston PS (2007) Os insetos: um resumo de entomologia. São Paulo: Roca. 1st edit. 456p.
Harbch RE (2016) Mosquitoes Taxonomic Inventory. Valid Species List. Available at http://mosquito-taxonomic-inventory.info/valid-species-list.
Heinisch MRS, Diaz-Quijano FA, Chiaravalloti-Neto F, Pancetti FGM, Coelho RR, Andrade PS, Urbinatti PR, Almeida RMMS and Lima-Camara TN (2019) Seasonal and spatial distribution of Aedes aegypti and Aedes albopictus in a municipal urban park in São Paulo, SP, Brazil. Acta Tropica. 189: 104–111. https://doi.org/0.06/j.actatropica.208.09.0.
Higa Y (2011) Dengue vectors and their spatial distribution. Tropical Medicine and Health. 39 (4 Suppl): 17–27. https://doi.org/0.249/tmh.20-S04.
Huang C, Tam TYT, Chern Y, Lung SC, Chen N and Wu C (2018) Spatial Clustering of Dengue Fever Incidence and Its Association with Surrounding Greenness. International Journal of environmental Research and Public Health. 15(9): 1869. https://doi.org/0.3390/ijerph509869.
Huber JH, Childs ML, Caldwell JM and Mordecai EA (2018) Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. Plos Neglected Tropical Diseases. 12 (5): e0006451. https://doi.org/0.37/journal.pntd.000645.
Islam S, Haque CE, Hossain S and Hanesiak J (2021) Climate variability, dengue vector abundance and dengue fever cases in Dhaka, Bangladesh: a time-series study. Atmos. 12 (7): e905. https://doi.org/0.3390/atmos2070905.
Iwamura T, Guzman-Holst A and Murray KA (2020) Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nature Communications. 11(1): e2130 https://doi.org/10.1038/s41467-020-16010-4.
Jones R, Kulkarni MA and Davidson TMV (2020) Arbovirus vectors of epidemiological concern in the Americas: A scoping review of entomological studies on Zika, dengue and chikungunya virus vectors. PLoS One. 15(2): e0220753. https://doi.org/0.37/journal.pone.0220753, 2020.
Kilpatrick AM, Kramer LD, Campbell SR, Alleyne O, Dobson AP and Daszak P (2005) West Nile virus risk assessment and the bridge vector paradigm. Emerging Infectious Diseases. 11(3): 425–429. https://doi.org/10.3201/eid1103.040364.
Lafferty KD (2009) The ecology of climate change and infectious diseases. Ecology. 90 (4): 888–900.
Landsberg HE (1981) The urban climate. Academic Press. New York. 1st edit. 275 p.
Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB et al. (2011) Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America. 108 (18): 7460–7465. https://doi.org/0.073/pnas.037708.
Liu-Helmersson J, Stenlund H, Wilder-Smith A and Rocklov J (2014) Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. PLoS One. 9 (3): e89783. https://doi.org/0.37/journal.pone.0089783.
Lorenz C, Azevedo TS and Chiaravalloti-Neto F (2022) Impact of climate change on West Nile virus distribution in South America. Transactions of the Royal Society of Tropical Medicine and Hygiene. 116 (11): 1043–1053. https://doi.org/10.1093/trstmh/trac044.
Lounibos LP, Bargielowski I, Carrasquilla C and Nishimura N (2016) Coexistence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Peninsular Florida two decades after competitive displacements. Journal of Medical Entomology. 53 (6): 1385–1390. https://doi.org/0.093/jme/tjw22.
Lwande OW, Obanda V, Lindstro A, Ahlm C, Evander M, Na Slund J and Bucht G (2020) Globe-Trotting Aedes aegypti and Aedes albopictus: Risk Factors for Arbovirus Pandemics. Vector-Borne and Zoonotic Diseases. 20 (2): 71–81. https://doi.org/0.089/vbz.209.2486.
Maccormack-Gelles B, Lima Neto AS, Sousa GS, Nascimento OJ, Machado MMT, Wilson ME and Castro MC (2018) Epidemiological characteristics and determinants of dengue transmission during epidemic and non-epidemic years in Fortaleza, Brazil: 2011–2015. Plos Neglected Tropical Diseases. 12 (12): e0006990. https://doi.org/0.37/journal.pntd.0006990.
Marcondes CB (2001) Entomologia médica e veterinária. Rio de Janeiro: Atheneu. 2nd edit. 544p.
Marinho, R.A.; Beserra, E.B.; Bezerra-Gusmão, M.A.; Porto, V.S.; Olinda, R.A.; Santos, CAC (2016) Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil. Jounal of Vector Ecology. 41 (1): 1–10. https://doi.org/0./jvec.287.
Misslin R, Telle O, Daudé E, Vaguet A and Paul RE (2016) Urban climate versus global climate change-what makes the difference for dengue? Annals of the New York Academy of Sciences. 1382 (1): 56–72. https://doi.org/0./nyas.3084.
Moraes SA, Marrelli MT and Natal Delsio (2006) Aspectos da distrobuição de Culex (Culex) quinquefasciatus Say (Diptera: Culicidae) na região do Pinheiros, na cidade de São Paulo, Estado de São Paulo, Brasil. Revista Brasileira de Entomologia 50 (3): 413–418. https://doi.org/10.1590/S0085-56262006000300012.
Morrison AC, Zielinski-Gutierrez E, Scott TW and Rosenberg R (2008) Defining Challenges and Proposing Solutions for Control of the Virus Vector Aedes aegypti. PLoS Medicine. 5 (3): e68. https://doi.org/0.37/journal.pmed.0050068.
Ochida N, Mangeas M, Dupont-Rouzeyrol M, Dutheil C, Forfait C, Peltier A, Descloux E and Menkes C (2022) Modeling present and future climate risk of dengue outbreak, a case study in New Caledonia. Environmental Health. 21: e22. https://doi.org/10.1186/s12940-022-00829-z.
PAHO-WHO (2022) Pan American Health – World Health Organization. Dengue: PAHO/WHO data, Maps and Statistics. https://www3.paho.org/data/index.php/es/temas/indicadores-dengue/dengue-regional/506-dengue-reg-ano-es.html.
Piovezan R, Azevedo TS and Von Zuben CJ (2012) Spatial evaluation of larvae of Culicidae (Diptera) from different breeding sites: application of a geospatial method and implications for vector control. Revista Brasileira de Entomologia. 56 (3): 368–376. https://doi.org/0.590/S0085-5626202005000037.
Piovezan R, Acorinthe JPO, Souza JHT, Visockas A, Azevedo TS and Von Zuben CJ (2017) Spatial distribution of culicidae (diptera) larvae, and its implications for public health, in five areas of the Atlantic Forest biome, state of São Paulo, Brazil. 61 (2): 123–135. Revista Brasileira de Entomologia. https://doi.org/0.06/j.rbe.206.2.
Piovezan R, Visockas A, Azevedo TS, Zuben CJ and Sallum MAM (2019) Spatial-temporal distribution of Aedes (Stegomyia) aegypti and locations of recycling unitis in southeastern Brazil. Parasite & Vectors. 12 (1): 541. https://doi.org/0.86/s307-09-3794-z.
Powell JR (2018) Mosquito-Borne Human Viral Diseases: Why Aedes aegypti? American Journal of Tropical Medicine and Hygiene. 98 (6): 1563–1565. https://doi.org/0.4269/ajtmh.7-0866.
Reinhold JM, Lazzari CR and Lahondère C (2018) Effects of the Environmental Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review. Insects. 9 (4):158. https://doi.org/10.3390/insects9040158.
Reisen WK (2013) Ecology of West Nile Virus in North America. Viruses. 5 (9): 2079–2105. https://doi.org/10.3390/v5092079.
Reisen WK (2010) Landscape epidemiology of vector-borne diseases. Annual Review of Entomology. 55: 461–483.
Ruppert EE, Fox RS and Barnes RD (2005) Zoologia dos Invertebrados. São Paulo: Roca. 4th edit. 1046p.
Ruybal JE, Kramer LD and Kilpatrick M (2016) Geographic variation in the response of Culex pipiens life history traits to temperature. Parasites & Vectors. 9: e116. https://doi.org/10.1186/s13071-016-1402-z. 2016.
Ryan SJ, Carlson CJ, Mordecai EA and Johnson LR (2019) Global expansion and redistribution of Aedes-borne virues transmission risk with climate change. Plos Neglected Tropical Diseases. 13 (3): e0007213. https://doi.org/10.1371/journal.pntd.0007213.
Sallum MAM, Schutz TR and Wilkerson RC (2000) Phylogeny of Anophelinae (Diptera: Culicidae) based on morphological characters. Annals of the Entomological Society of America. 93(4): 745–775.
Segura NA, Muñoz AL, Losada-Barragán M, Torres O, Rodríguez AK, Rangel H and Bello F (2021) Minireview: Epidemiological impact of arboviral diseases in Latin American countries, arbovirus-vector interactions and control strategies. Pathogens and Disease. 79 (7): eftab043. https://doi.org/10.1093/femspd/ftab043.
Soghigian J, Gloria-Soria A, Robert V, Le Goff G, Failloux AB and Powell JR (2020) Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Molecular Ecology. 29 (19): 3593–3606.
São Paulo (2001) Superintendência de Controle de Endemias. Vigilância e controle do Aedes aegypti: Normas, orientações e recomendações técnicas. Plano de Intensificação das ações de controle de dengue no Estado de São Paulo. Secretaria de Estado da Saúde de São Paulo, Governo do Estado de São Paulo. 71 p.
São Paulo (2010) Superintendência de Controle de Endemias. Coordenadoria de Controle de Doenças: Programa de Vigilância e Controle da Dengue. Secretaria de Estado da Saúde de São Paulo Governo do Estado de São Paulo. Available at: http://www.cve.saude.sp.gov.br/htm/zoo/pdf/Programa10_Estadual_dengue.pdf.
São Paulo (2022) CVE – Centro de Vigilância Epidemiológica ‘Prof. Alexandre Vranjac’. Distribuição dos casos confirmados de Chikungunya importado, autoctone, lpi, semana epidemiológica ESP, 202. Available at: https://www.saude.sp.gov.br/resources/cve-centro-de-vigilancia-epidemiologica/areas-de-vigilancia/doencas-de-ransmissao-por-vetores-e-zoonoses/dados/chikung/202/chikung2_import_autoc_res.htm.
Shocket MS, Verwillow AB, Numazu MG, Slamani H, Cohen JM, Moustaid FE, Rohr J, Johnson LR and Mordecai EA (2020) Transmission of West Nile and five other temperate mosquitos-borne viruses peaks at temperatures between 23 °C and 26 °C. eLife. 9: e58511. https://doi.org/10.7554/eLife.58511.
Souza SC, Carneira M, Eiras AE, Bezerra JMT and Barbosa DS (2021) Factors associated with the occurrence of dengue epidemics in Brazil: a systematic review. Revista Panamericana de Salud Publica. 45: e84. https://doi.org/0.26633/RPSP.202.84.
Tauil PL (2002) Aspectos críticos do controle do dengue no Brasil. Cadernos de Saúde Pública. 18 (3): 867–887.
Telle O, Nikolay B, Kumar V, Benkimoun S, Pal S, Nagpal BN and Paul RR (2021) Social and environmental risk factors for dengue in Delhi city: A retrospective study. Plos Neglected Tropical Diseases. 15 (2): e0009024. https://doi.org/0.37/journal.pntd.0009024.
Tippelt L, Werner D and Kampen H (2020) Low temperature tolerance of three Aedes albopictus strains (Diptera: Culicide) under constant and fluctuating temperature scenarios. Parasite & Vectors. 13 (1): 587. https://doi.org/10.1186/s13071-020-04386-7.
Triplehorn CA and Jonnson NF (2011) Estudo dos insetos. São Paulo: Cengage Learning. 7th edit. 776p.
Tsai PJ, Lin TH, Teng HJ and Yeh HC (2018) Critical low temperature for the survival of Aedes aegypti in Taiwan. Parasite & Vectors. 11: e22. https://doi.org/10.1186/s13071-020-04386-7.
Vanwambeke SO, Somboon P, Harbach R, Isenstadt M, Lambin EF, Walton C and Butlin RK (2007) Landscape and land cover factors influence the presence of Aedes and Anopheles larvae. Journal of Medical Entomology. 44 (1): 133–144. https://doi.org/0.603/0022-2585.
Yactavo S, Staples JE, Millot V, Cibrelus L and Ramon-Pardo P (2016) Epidemiology of Chikungunya in the Americas. The Journal of Infectious Diseases. 214 (Suppl 5): 441–445. https://doi.org/0.093/infdis/jiw390.
Yang B, Borget BA, Alto BW, Boohene CK, Brew J, Deutsch K, et al. (2021) Modelling distributions of Aedes aegypti and Aedes albopictus using climate, host density and interspecies competition. Plos Neglected Tropical Diseases. 15(3): e0009063. https://doi.org/0.37/journal.pntd.0009063.
Weier J and Herring D (2000) Measuring vegetation (NDVI & EVI). NASA. Available at: https://earthobservatory.nasa.gov/features/MeasuringVegetation.
Weaver SC and Reisen W (2010) Present and future arboviral threats. Antiviral Research. 85 (2): 328–345. https://doi.org/10.1016/j.antiviral.2009.10.008.
Weaver SC (2013) Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention. Trends in Microbiology. 21 (8): 360–363. https://doi.org/10.1016/j.tim.2013.03.003.
Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, Yongshi P and Vasilakis N (2016) Zika vírus: History, emergence, biology and prospects for control. Antiviral Research. 130: 69–80. https://doi.org/10.1016/j.antiviral.2016.03.010. 2016.
Wilke ABB, Benelli G and Beier JC (2021a) Urbanization and the rise of vector mosquitoes and arbovirus transmission. Proceedings. 1st International Electronic Conference on Entomology. https://doi.org/0.3390IECE-050.
Wilke ABB, Vasquez C, Carvajal A, Moreno M, Fuller DO, Cardenas G, Petrie WD and Beier JC (2021b) Urbanization favors the proliferation of Aedes aegypti and Culex quinquefasciatus in urban areas of Miami-Dade County, Florida. Scientific Reports. 11: e 22989. https://doi.org/10.1038/s41598-021-02061-0.
WHO (2017) Global vector control response 207–2030. Geneva: World Health Organization; Document A70/26 Rev.1. 5p. Available at: https://apps.who.int/gb/ebwha/pdf_files/WHA70/A70_R16-en.pdf?ua=1.
Wimberly MC, Davis JK, Evans MV, Hess A, Newberry PM, Solano-Asamoah N and Murdock CC (2020) Land cover affects microclimate and temperature suitability for arbovirus transmission in an urban landscape. Plos Neglected Tropical Diseases. 14 (9): e0008614. https://doi.org/10.1371/journal.pntd.0008614.
Zapletal J, Erraguntla M, Adelman ZN, Myles KM and Lawley MA (2018) Impacts of diurnal temperature and larval density on aquatic development of Aedes aegypti. Plos One. 13 (3): e0194025. https://doi.org/0.37/journal.pone.094025.
Zeller H, Bortel WV and Sudre B (2016). Chikungunya: its history in Africa and Asia and its spread to new regions in 203–204. The Journal of Infectious Diseases. 214 (suppl 5): 436–440. https://doi.org/https://doi.org/0.093/infdis/jiw39.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 266 | 131 | 14 |
Full Text Views | 11 | 4 | 0 |
PDF Views & Downloads | 18 | 6 | 0 |
Terms and Conditions | Privacy Statement | Cookie Settings | Accessibility | Legal Notice | Sitemap | Copyright © 2016-2025