Part 3 Reimagining STEM as STEAM

In: STEAM Education
Editors:
Yichien Cooper
Search for other papers by Yichien Cooper in
Current site
Google Scholar
PubMed
Close
and
Alice Lai
Search for other papers by Alice Lai in
Current site
Google Scholar
PubMed
Close

Purchase instant access (PDF download and unlimited online access):

$40.00
  • Collapse
  • Expand

STEAM Education

Intersections and Thresholds

  • Andaloro, G., Donzelli, V., & Sperandeo‐Mineo, R. M. (1991). Modelling in physics teaching: The role of computer simulation. International Journal of Science Education, 13(3), 243254. https://doi.org/10.1080/0950069910130303

    • Search Google Scholar
    • Export Citation
  • Ardiny, H., & Khanmirza, E. (2018, October). The role of AR and VR technologies in education developments: Opportunities and challenges. In 2018 6th RSI International Conference on Robotics and Mechatronics (pp. 482487). Institute of Electrical and Electronics Engineers.

    • Search Google Scholar
    • Export Citation
  • Baker, W. M., Lusk, E. J., & Neuhauser, K. L. (2012). On the use of cell phones and other electronic devices in the classroom: Evidence from a survey of faculty and students. Journal of Education for Business, 87(5), 275289. https://psycnet.apa.org/doi/10.1080/08832323.2011.622814

    • Search Google Scholar
    • Export Citation
  • Bayraktar, S. (2001). A meta-analysis of the effectiveness of computer-assisted instruction in science education. Journal of Research on Technology in Education, 34(2), 173188. https://doi.org/10.1080/15391523.2001.10782344

    • Search Google Scholar
    • Export Citation
  • Billinghurst, M., Clark, A., & Lee, G. (2014) A survey of augmented reality. Foundations and Trends in Human‒Computer Interaction, 8(2‒3), 73272. http://dx.doi.org/10.1561/1100000049

    • Search Google Scholar
    • Export Citation
  • Blake, C., & Scanlon, E. (2007). Reconsidering simulations in science education at a distance: Features of effective use. Journal of Computer Assisted Learning, 23(6), 491502. https://doi.org/10.1111/j.1365-2729.2007.00239.x

    • Search Google Scholar
    • Export Citation
  • Carmigniani, J., & Furht, B. (2011). Augmented reality: An overview. In B. Furht (Ed.), Handbook of augmented reality (pp. 346). Springer. https://doi.org/10.1007/978-1-4614-0064-6_1

    • Search Google Scholar
    • Export Citation
  • Center for Applied Special Technology. (2011). Universal design for learning guidelines. Version 2.0. Author.

  • Cheng, K. H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22(4), 449462. http://dx.doi.org/10.1007/s10956-012-9405-9

    • Search Google Scholar
    • Export Citation
  • Cokelez, A., & Dumon, A. (2005). Atom and molecule: Upper secondary school French students’ representations in long-term memory. Chemistry Education Research and Practice, 6(3), 119135.

    • Search Google Scholar
    • Export Citation
  • Crotty, M., & Crotty, M. F. (1998). The foundations of social research: Meaning and perspective in the research process. Sage.

  • Elements 4D interactive blocks. (2024). Kickstarter. https://www.kickstarter.com/projects/daqri/elements-4d-interactive-blocks

  • Ellington, H. (1981). Games and simulations in science education. Nichols Publishing Company.

  • Engel, G., & Green, T. (2011). Cell phones in the classroom: Are we dialing up disaster? TechTrends, 55(2), 3945. https://doi.org/10.1007/s11528-011-0482-z

    • Search Google Scholar
    • Export Citation
  • Every Student Succeeds Act, 20 U.S.C. § 6301 (2015). https://www.congress.gov/bill/114th-congress/senate-bill/1177

  • Flick, L. B. (1993). The meanings of hands-on science. Journal of Science Teacher Education, 4(1), 18. http://dx.doi.org/10.1007/BF02628851

    • Search Google Scholar
    • Export Citation
  • Gil‐Perez, D., & Carrascosa, J. (1990). What to do about science “misconceptions.” Science Education, 74(5), 531540. https://psycnet.apa.org/doi/10.1002/sce.3730740504

    • Search Google Scholar
    • Export Citation
  • Gilroy, M. (2004). Invasion of the classroom cell phones. The Education Digest, 69(6), 5660.

  • Goff, E. E., Mulvey, K. L., Irvin, M. J., & Hartstone-Rose, A. (2018). Applications of augmented reality in informal science learning sites: A review. Journal of Science Education and Technology, 27(5), 433447. https://www.learntechlib.org/p/189101/

    • Search Google Scholar
    • Export Citation
  • Johnson, D. M., Wardlow, G. W., & Franklin, T. D. (1997). Hands-on activities versus worksheets in reinforcing physical science principles: Effects on student achievement and attitude. Journal of Agricultural Education, 38(3), 917. https://doi.org/10.5032/jae.1997.03009

    • Search Google Scholar
    • Export Citation
  • Kamenetz, A. (2019, October 31). It’s a smartphone life: More than half of US children now have one. National Public Radio: Ideastream Public Media https://www.npr.org/2019/10/31/774838891/its-a-smartphone-life-more-than-half-of-u-s-children-now-have-one

    • Search Google Scholar
    • Export Citation
  • King-Sears, M. (2009). Universal design for learning: Technology and pedagogy. Learning Disability Quarterly, 32(4), 199201. https://doi.org/10.2307/27740372

    • Search Google Scholar
    • Export Citation
  • Kularbphettong, K., Roonrakwit, P., & Chutrtong, J. (2018, July). Effectiveness of enhancing classroom by using augmented reality technology. In International Conference on Applied Human Factors and Ergonomics (pp. 125133). Springer. http://dx.doi.org/10.1007/978-3-319-93882-0_13

    • Search Google Scholar
    • Export Citation
  • Levy Nahum, T., Mamlok‐Naaman, R., Hofstein, A., & Taber, K. S. (2010). Teaching and learning the concept of chemical bonding. Studies in Science Education, 46(2), 179207. http://dx.doi.org/10.1080/03057267.2010.504548

    • Search Google Scholar
    • Export Citation
  • McMahon, D. D., Cihak, D. F., Wright, R. E., & Bell, S. M. (2016). Augmented reality for teaching science vocabulary to postsecondary education students with intellectual disabilities and autism. Journal of Research on Technology in Education, 48(1), 3856. http://dx.doi.org/10.1080/15391523.2015.1103149

    • Search Google Scholar
    • Export Citation
  • Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1994). Augmented reality: A class of displays on the reality‒virtuality continuum. Telemanipulator and Telepresence Technologies, 2351, 282292. http://dx.doi.org/10.1117/12.197321

    • Search Google Scholar
    • Export Citation
  • Muhammad, M. (2022, November). Review of trends in learning media of augmented reality integrated with STEM approach to improve students’ creative thinking skill. Journal of Physics: Conference Series, 2377(1), http://dx.doi.org/10.1088/1742-6596/2377/1/012084

    • Search Google Scholar
    • Export Citation
  • Nakhleh, M. B. (1992). Why some students don’t learn chemistry: Chemical misconceptions. Journal of Chemical Education, 69(3), 191196. http://dx.doi.org/10.1021/ed069p191

    • Search Google Scholar
    • Export Citation
  • Plunkett, K. N. (2019). A simple and practical method for incorporating augmented reality into the classroom and laboratory. Journal of Chemical Education, 96(11), 26282631. https://doi.org/10.1021/acs.jchemed.9b00607

    • Search Google Scholar
    • Export Citation
  • Rafiq, K. R. M., & Hashim, H. (2018). Augmented reality game (ARG), 21st century skills and ESL classroom. Journal of Educational and Learning Studies, 1(1), 2934. http://dx.doi.org/10.32698/0232

    • Search Google Scholar
    • Export Citation
  • Rutten, N., Van Joolingen, W. R., & Van Der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136153. https://psycnet.apa.org/doi/10.1016/j.compedu.2011.07.017

    • Search Google Scholar
    • Export Citation
  • Sahin, S. (2006). Computer simulations in science education: Implications for Distance Education. Turkish Online Journal of Distance Education, 7(4), Article 12. https://files.eric.ed.gov/fulltext/ED494379.pdf

    • Search Google Scholar
    • Export Citation
  • Sanii, B. (2019). Creating augmented reality USDZ files to visualize 3D objects on student phones in the classroom. Journal of Chemical Education, 97(1), 253257. https://doi.org/10.1021/acs.jchemed.9b00577

    • Search Google Scholar
    • Export Citation
  • Satterthwaite, D. (2010). Why are ‘hands-on’ science activities so effective for student learning? Teaching Science, 56(2), 710 (EJ907322). ERIC. https://eric.ed.gov/?redir=http%3a%2f%2fwww.asta.edu.au%2fresources%2fteachingscienceSchneider, J., Patfield, M., Croft, H., Salem, S., & Munro, I. (2020). Introducing augmented reality technology to enhance learning in pharmacy education: A pilot study. Pharmacy, 8(3), 109. https://doi.org/10.3390%2Fpharmacy8030109

    • Search Google Scholar
    • Export Citation
  • Schwichow, M., Zimmerman, C., Croker, S., & Härtig, H. (2016). What students learn from hands‐on activities. Journal of Research in Science Teaching, 53(7), 9801002. https://doi.org/10.1002/tea.21320

    • Search Google Scholar
    • Export Citation
  • Tillman, D., Alvidrez-Aguirre, V., Kim, S. J., & An, S. (2019). Teachers’ conceptions of the pedagogical potential for classroom-based augmented reality. Journal of Educational Multimedia and Hypermedia, 28(4), 411434. https://www.learntechlib.org/primary/p/182417/

    • Search Google Scholar
    • Export Citation
  • Virata, R. O., & Castro, J. D. L. (2019, January). Augmented reality in science classroom: Perceived effects in education, visualization and information processing. In Proceedings of the 10th International Conference on E-Education, E-Business, E-Management and E-Learning (pp. 8592). https://doi.org/10.1145/3306500.3306556

    • Search Google Scholar
    • Export Citation
  • Vygotsky L. (1986). Thought and language. (A. Kozulin, Trans.). MIT Press. (Original work published 1934)

  • Walker, Z., McMahon, D. D., Rosenblatt, K., & Arner, T. (2017). Beyond Pokémon: Augmented reality is a universal design for learning tool. SAGE Open, 7(4). https://doi.org/10.1177/2158244017737815

    • Search Google Scholar
    • Export Citation
  • Wu, H.-K., Lee, S. W.-Y., Chang, H.-Y., & Liang, J.-C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 4149. https://doi.org/10.1016/j.compedu.2012.10.024

    • Search Google Scholar
    • Export Citation
  • Aguilera, D., & Ortiz-Revilla, J. (2021). STEM vs. STEAM education and student creativity: A systematic literature review. Education Sciences, 11(7), Article 331. https://doi.org/10.3390/educsci11070331

    • Search Google Scholar
    • Export Citation
  • Autenrieth, R., Lewis, C., & Butler-Perry, K. (2017). Long-term impact of the enrichment experiences in engineering (E3) summer teacher program. Journal of STEM Education, 18(1), 2531.

    • Search Google Scholar
    • Export Citation
  • Berg, R. E. (1991). Pendulum waves: A demonstration of wave motion using pendula. American Journal of Physics, 59(2), 186187. https://doi.org/10.1119/1.16608

    • Search Google Scholar
    • Export Citation
  • Boice, K. L., Jackson, J. R., Alemdar, M., Rao, A. E., Grossman, S., & Usselman, M. (2021). Supporting teachers on their STEAM journey: A collaborative STEAM teacher training program. Education Sciences, 11(3), Article 105. https://doi.org/10.3390/educsci11030105

    • Search Google Scholar
    • Export Citation
  • Brophy, S., Klein, S., Portsmore, M., & Roger, C. (2008). Advancing engineering education in P‒12 classrooms. Journal of Engineering Education, 97(3), 369387. https://doi.org/10.1002/j.2168-9830.2008.tb00985.x

    • Search Google Scholar
    • Export Citation
  • Brueningsen, C., Brueningsen, E., & Bower, B. (1997). Math and science in motion: Activities for middle school. Texas Instruments Incorporated.

    • Search Google Scholar
    • Export Citation
  • Burchat, P. (2007). Lecture 2: Dimensional analysis - from biology to cosmology. Stanford University. https://web.stanford.edu/~rpam/dropoff/Phys041N/lecture2_dimanalysis.pdf

    • Search Google Scholar
    • Export Citation
  • Common Core State Standards Initiative. (2010). Common core state standards for mathematics. National Governors Association Center for Best Practices and the Council of Chief State School Officers. http://www.corestandards.org/wp-content/uploads/Math_Standards.pdf

    • Search Google Scholar
    • Export Citation
  • Dubson, M., & Rouinfar, A. (2021). Pendulum lab. University of Colorado Boulder. https://phet.colorado.edu/sims/html/pendulum-lab/latest/pendulum-lab_en.html

    • Search Google Scholar
    • Export Citation
  • Flaten, J. A., & Parendo, K. A. (2001). Pendulum waves: A lesson in aliasing. American Journal of Physics, 69(7), 778782. https://doi.org/10.1119/1.1349543

    • Search Google Scholar
    • Export Citation
  • Glassmeyer, D., Hsieh, K., & Nguyen, L. (2018, December). Integrating STEAM in the arts classroom: Examining student knowledge and teacher reflections [Paper presentation]. The 2018 International Conference and Exhibition on Art and Design, National Pingtung University, Pingtung City, Taiwan.

    • Search Google Scholar
    • Export Citation
  • Grodoski, C. (2018). Visualizing data in art education: Research, practice, and advocacy. Art Education, 71(2), 3645. https://doi.org/10.1080/00043125.2018.1414537

    • Search Google Scholar
    • Export Citation
  • Harvard Natural Sciences Lecture Demonstrations. (2010, June 9). Pendulum waves [Video]. YouTube. https://youtu.be/yVkdfJ9PkRQ

  • Henriksen, D., Mehta, R., & Mehta, S. (2019). Design thinking gives STEAM to teaching: A framework that breaks disciplinary boundaries. In M. S. Khine & S. Areepattamannil (Eds.), STEAM education (pp. 5778). Springer.

    • Search Google Scholar
    • Export Citation
  • Hsieh, K., Glassmeyer, D., & Nguyen, L. (2019). The collaborative teaching and learning: High school STEAM project-based learning and lantern design. International Journal of Arts Education, 17(1), 3367.

    • Search Google Scholar
    • Export Citation
  • McLeod, K., Steele, M., & Brown, S. (2015, February). Design features and outcomes in common core professional development for high school: Functions and modeling [Paper presentation]. Association of Mathematics Teacher Educators Annual Conference, Orlando, FL, United States.

    • Search Google Scholar
    • Export Citation
  • National Art Education Association. (2022, June 1). NAEA position statement on STEAM education. https://www.arteducators.org/advocacy-policy/articles/552-naea-position-statement-on-steam-education

    • Search Google Scholar
    • Export Citation
  • National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical success for all. Author.

  • National Science Board. (2022). Science and engineering indicators 2022. National Science Foundation Report 430. https://www.nsf.gov/statistics/indicators/

    • Search Google Scholar
    • Export Citation
  • Neale, V. (2017). Closing the gap: The quest to understand prime numbers. Oxford University Press.

  • Nutov, L. (2021). Integrating visual arts into the mathematics curriculum: The case of pre-service teachers. Teaching and Teacher Education, 97, 111. http://dx.doi.org/10.1016/j.tate.2020.103218

    • Search Google Scholar
    • Export Citation
  • Pavelich, L. (2011, September 23). Fun with dimensional analysis 1 – Simple pendulum. Scrub Physics. https://leepavelich.wordpress.com/2011/09/23/fun-with-dimensional-analysis-1-simple-pendulum/

    • Search Google Scholar
    • Export Citation
  • Perignat, E., & Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative literature review. Thinking Skills and Creativity, 31, 3143. https://psycnet.apa.org/doi/10.1016/j.tsc.2018.10.002

    • Search Google Scholar
    • Export Citation
  • Presmeg, N. (2006). Research on visualization in learning and teaching mathematics. In A. Gutierrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 205236). Sense.

    • Search Google Scholar
    • Export Citation
  • Sholihah, U., & Maryono, M. (2020). Students’ visual thinking ability in solving the integral problem. Journal of Research and Advances in Mathematics Education, 5(2), 175186.

    • Search Google Scholar
    • Export Citation
  • Suganda, E., Latifah, S., Irwandani, I., Sari, P. M., Rahmayanti, H., Ichsan, I. Z., & Rahman, M. M. (2021). STEAM and environment on students’ creative-thinking skills: A meta-analysis study. Journal of Physics: Conference Series 1796(1), 19. http://dx.doi.org/10.1088/1742-6596/1796/1/012101

    • Search Google Scholar
    • Export Citation
  • Tayebi, A., Gómez, J., & Delgado, C. (2021). Analysis on the lack of motivation and dropout in engineering students in Spain. IEEE Access, 9, 6625366265. http://dx.doi.org/10.1109/ACCESS.2021.3076751

    • Search Google Scholar
    • Export Citation
  • Von Worley, S. (Oct. 5, 2012). Dance, factors, dance: A variation on [Brent] Yorgey’s factorization diagrams. http://www.datapointed.net/visualizations/math/factorization/animated-diagrams/

    • Search Google Scholar
    • Export Citation
  • Wijaya, P. A., & Widodo, A. (2021, March). Virtual experiment of simple pendulum to improve students’ conceptual understanding. Journal of Physics: Conference Series, 1806(1), Article 012133. http://dx.doi.org/10.1088/1742-6596/1806/1/012133

    • Search Google Scholar
    • Export Citation
  • Yorgey, B. (2012, Oct. 5). Factorization diagrams. The math less traveled. https://mathlesstraveled.com/2012/10/05/factorization-diagrams/

    • Search Google Scholar
    • Export Citation
  • Ball, M. (2021, June). Framework for the metaverse [Foreword to The metaverse primer]. https://www.matthewball.vc/all/forwardtothemetaverseprimer

    • Search Google Scholar
    • Export Citation
  • Brown, S., & Bousalis, R. (2018). Curriculum integration in contemporary teaching practice: Emerging research and opportunities. IGI Global.

    • Search Google Scholar
    • Export Citation
  • Buczynski, S., Ireland, K., Reed, S., & Lacanienta, E. (2012). Communicating science concepts through art: 21st-century skills in practice. Science Scope, 35(9), 2935 (EJ996843). ERIC.

    • Search Google Scholar
    • Export Citation
  • Chowdhury, M. (2022, May 27). 8 skills that can’t be replaced by robots and automation. Analytics Insight. https://www.analyticsinsight.net/8-skills-that-cant-be-replaced-by-robots-and-automation/

    • Search Google Scholar
    • Export Citation
  • Compuchild. (2023). Inclusion and equality through STEAM programs for kids. https://compuchild.com/blog/inclusion-and-equality-through-steam-programs-for-kids

    • Search Google Scholar
    • Export Citation
  • Debroy, A. (2017, October 7). What is STREAM education & why is It gaining popularity? EdTechReview. https://edtechreview.in/trends-insights/insights/2968-what-is-stream-education

    • Search Google Scholar
    • Export Citation
  • Fu, Y. (n.d.). Snow Yunxue Fu. https://snowyunxuefu.com/home.html

  • Fontcuberta, J. (Ed.). (2015). The post-photographic condition: Le Mois de la Photo a Montreal, international biennial of the contemporary image. Kerber.

    • Search Google Scholar
    • Export Citation
  • Hanhardt, J. G., & Hakuta, K. (2012). Nam June Paik: Global visionary. Smithsonian American Art Museum.

  • Hare, T. (2016, January 18). Turn STEM to STEAM with the design thinking process. The Art of Education University. https://theartofeducation.edu/2016/01/18/turn-stem-to-steam-with-the-design-thinking-process/

    • Search Google Scholar
    • Export Citation
  • Hart, C. (n.d.). Claudia Hart. https://claudiahart.com/

  • Hepworth, K. J., & Canon, C. (2018). Improving science students’ data visualizations: A STEAM-based approach. Dialectic, 2(1), 4878. https://doi.org/10.3998/dialectic.14932326.0002.104

    • Search Google Scholar
    • Export Citation
  • Ho, H. (2018). DSLCollection: A collection of Chinese contemporary art. https://www.dslbook.com/dslbook/

  • Hultén, P., & Königsberg, F. (Eds.). (1966). 9 Evenings: Theatre and engineering [Exhibition program]. The Foundation for Contemporary Performance Arts, Inc. https://monoskop.org/images/5/5d/9_Evenings_Theater_and_Engineering_1966.pdf

    • Search Google Scholar
    • Export Citation
  • Lathan, J. (n. d.). Why STEAM is so important to 21st century education. University of San Diego online. https://onlinedegrees.sandiego.edu/steam-education-in-schools/#STEAM

    • Search Google Scholar
    • Export Citation
  • Nissani, M. (1995). Fruits, salads, and smoothies: A working definition of interdisciplinarity. The Journal of Educational Thought, 29(2), 121128. https://doi.org/10.11575/jet.v29i2.52385

    • Search Google Scholar
    • Export Citation
  • NYU Tisch. (n.d.). Photography & Imaging. https://tisch.nyu.edu/photo

  • O’Doherty, B. (2006). New York: 9 armored nights. In C. Morris (Ed.). 9 evenings reconsidered: Art, theatre, and engineering, 1966 (pp. 7981). MIT List Visual Arts Center. (Original essay published 1966)

    • Search Google Scholar
    • Export Citation
  • Rapoza, K. (2022, October 21). The metaverse is failing, but this is one investment that will not die. Forbes. https://www.forbes.com/sites/kenrapoza/2022/10/21/the-metaverse-is-failing-but-this-is-one-investment-that-will-not-die/

    • Search Google Scholar
    • Export Citation
  • Rhode Island School of Design. (2014, May 7). Rhode Island School of Design launches STEAM map to demonstrate global activity and support for the movement. https://www.risd.edu/news/for-press/press-releases/rhode-island-school-design-launches-steam-map-demonstrate-global

    • Search Google Scholar
    • Export Citation
  • Stahl, A. (2021, March 10). How AI will impact the future of work and life. Forbes. https://www.forbes.com/sites/ashleystahl/2021/03/10/how-ai-will-impact-the-future-of-work-and-life/

    • Search Google Scholar
    • Export Citation
  • Sudderth, A. (n.d.). A guide for interdisciplinary teaching and learning. Rethink together. https://xqsuperschool.org/rethinktogether/interdisciplinary-teaching-and-learning/

    • Search Google Scholar
    • Export Citation
  • The skeletons of Washington Square. (October 12, 2021). Washington Square Park Blog. https://www.washingtonsquareparkblog.com/2021/10/12/skeletons-washington-square/

    • Search Google Scholar
    • Export Citation
  • Vasagar, J. (2014, May 19). Countries that excel at problem-solving encourage critical thinking. Financial Times. https://www.ft.com/content/e512db9c-c643-11e3-ba0e-00144feabdc0

    • Search Google Scholar
    • Export Citation
  • Young, K. (2019, July 3). Why creativity is important for all jobs, even in STEM. Silicon Republic. https://www.siliconrepublic.com/advice/creativity-jobs-stem-automation-ai

    • Search Google Scholar
    • Export Citation
  • Bers, M. U. (2021). Coding as a playground: Programming and computational thinking in the early childhood classroom (2nd ed.). Routledge.

    • Search Google Scholar
    • Export Citation
  • Buganza, T., Bellis, P., Magnanini, S., Press, J., Shani, A. B., Trabucchi, D., Verganti, R., & Zasa, F. P. (2023). Storymaking and organizational transformation: How the co-creation of narratives engages people for innovation and transformation. Routledge.

    • Search Google Scholar
    • Export Citation
  • Bunda, T., Heckenberg, R., Snepvangers, K., Phillips, L. G., Lasczik, A., & Black, A. L. (2019). Storymaking belonging. Art/Research International, 4(1), 153179. https://doi.org/10.18432/ari29429

    • Search Google Scholar
    • Export Citation
  • Compton, M. K., & Thompson, R. C. (2018). StoryMaking: The maker movement approach to literacy for early learners. Redleaf Press.

  • Denning, P. J., & Tedre, M. (2019). Computational thinking. The MIT Press.

  • Dewey, J. (1980). Art as experience. Perigee Books. (Original work published 1934).

  • Families Learning Together (n.d.). https://fltsmtx.wp.txstate.edu/

  • Fuglestad, T. (2022). Make it, move it, flip it. SchoolArts, 121(7), 3637.

  • Graham, M. A. (2021). The disciplinary borderlands of education: Art and STEAM education. Journal for the Study of Education and Development, 44(4), 769800. https://doi.org/10.1080/02103702.2021.1926163

    • Search Google Scholar
    • Export Citation
  • Grover, S. (2022). Computational thinking today. In A. Yadav & U. D. Berthelsen (Eds.), Computational thinking in education: A pedagogical perspective (pp. 1840). Routledge. https://doi.org/10.4324/9781003102991

    • Search Google Scholar
    • Export Citation
  • Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come. In S. Sentance, E. Barendsen, & C. Schulte (Eds.), Computer science education: Perspectives on teaching and learning in school (pp. 1938). Bloomsbury Academic. https://doi.org/10.5040/9781350057142.ch-003

    • Search Google Scholar
    • Export Citation
  • Guidry, L. (2022, March 27). If you are given a cookie …. Scratch. https://scratch.mit.edu/projects/664121832/

  • Hafeli, M. (2015). Exploring studio materials: Teaching creative art making to children. Oxford University Press.

  • Heller, R. (1992). Ruth Heller’s how to hide a butterfly & other insects. Grosset & Dunlap.

  • Johnston, K., Kervin, L., & Wyeth, P. (2022). STEM, STEAM and makerspaces in early childhood: A scoping review. Sustainability, 14(20), Article 13533. https://doi.org/10.3390/su142013533

    • Search Google Scholar
    • Export Citation
  • Justice, S. (2016). Learning to teach in the digital age: New materialities and maker paradigms in schools. Peter Lang.

  • Justice, S. (2019). Interface: The transformative potential of computational making. NAEA News, 61(5), 20. https://doi.org/10.1080/01606395.2019.1657759

    • Search Google Scholar
    • Export Citation
  • Justice, S. (2020). Designing the social interface: More than social, more than material. In A. D. Knochel, C. Liao, & R. M. Patton (Eds.), Critical digital making in art education (pp. 6174). Peter Lang.

    • Search Google Scholar
    • Export Citation
  • Justice, S. (2024). Engineering joy: Toying with process in expanded media arts. In T. Hunter-Doniger & N. Walkup (Eds.), STEAM education: Transdisciplinarity of art in the curriculum (pp. 118129). Routledge.

    • Search Google Scholar
    • Export Citation
  • Justice, S., & Assaf, L. (2020). Exploring early childhood teachers’ abilities to identify computational thinking precursors to strengthen computer science in classrooms [Abstract]. National Science Foundation. https://www.nsf.gov/awardsearch/showAward?AWD_ID=2006595

    • Search Google Scholar
    • Export Citation
  • Kafai, Y. B., & Proctor, C. (2022). A revaluation of computational thinking in K–12 education: Moving toward computational literacies. Educational Researcher, 51(2), 146151. https://doi.org/10.3102/0013189x211057904

    • Search Google Scholar
    • Export Citation
  • Knochel, A. D., & Patton, R. M. (2015). If art education then critical digital making: Computational thinking and creative code. Studies in Art Education, 57(1), 2138. https://doi.org/10.1080/00393541.2015.11666280

    • Search Google Scholar
    • Export Citation
  • Kuby, C. R., & Rucker, T. G. (2016). Go be a writer!: Expanding the curricular boundaries of literacy learning with children. Teachers College Press.

    • Search Google Scholar
    • Export Citation
  • Leonard, N. (2021). Emerging artificial intelligence, art and pedagogy: Exploring discussions of creative algorithms and machines for art education. Digital Culture & Education, 13(1), 2041.

    • Search Google Scholar
    • Export Citation
  • Mohanty, K. (2022). Media arts [Co-editor’s letter]. SchoolArts, 121(7), 8. https://lsc-pagepro.mydigitalpublication.com/publication/?m=60985&i=736878&p=10&ver=html5

    • Search Google Scholar
    • Export Citation
  • New London Group. (1996). A pedagogy of multiliteracies: Designing social futures. Harvard Educational Review, 66(1), 6092. http://dx.doi.org/10.17763/haer.66.1.17370n67v22j160u

    • Search Google Scholar
    • Export Citation
  • Numeroff, L., & Bond, F. (2015). If you give a mouse a cookie. Harper Collins.

  • Pacini-Ketchabaw, V., Kind, S., & Kocher, L. L. M. (2017). Encounters with materials in early childhood education. Routledge.

  • Patton, R., Sweeny, R. W., Shin, R., & Lu, L. (2020). Teaching digital game design with preservice art educators. Studies in Art Education, 61(2), 155170. https://doi.org/10.1080/00393541.2020.1738165

    • Search Google Scholar
    • Export Citation
  • Peppler, K., & Wohlwend, K. (2018). Theorizing the nexus of STEAM practice. Arts Education Policy Review, 119(2), 8899. https://doi.org/10.1080/10632913.2017.1316331

    • Search Google Scholar
    • Export Citation
  • Picou, J. (2021, February 11). Knights of the woods. Scratch. https://scratch.mit.edu/projects/485857870/

  • Resnick, M. (2006). Computer as paintbrush: Technology, play, and the creative society. In D. Singer, R. Golikoff, & K. Hirsh-Pasek (Eds.), Play = learning: How play motivates and enhances children’s cognitive and social-emotional growth (pp. 192206). Oxford University Press.

    • Search Google Scholar
    • Export Citation
  • Rosenblatt, L. M. (1995). Literature as exploration. Modern Language Association. (Original work published 1933)

  • Smeed, J. (2012). The grumpy dragon and the angry dragon: From storytelling to storymaking. Storytelling, Self, Society, 8(1), 116. https://doi.org/10.1080/15505340.2012.635092

    • Search Google Scholar
    • Export Citation
  • Sweeny, R. (2022). Review of the book Critical digital making in art education, by A. D. Knochel, C. Liao, & R. M. Patton, Eds. International Journal of Education Through Art, 18(2), 289294. https://doi.org/10.1386/eta_00101_5

    • Search Google Scholar
    • Export Citation
  • Wing, J. M. (2017). Computational thinking’s influence on research and education for all. Italian Journal of Educational Technology, 25(2), 714. https://doi.org/10.17471/2499-4324/922

    • Search Google Scholar
    • Export Citation
  • Adobe. (n.d.). How to use, and break, the rule of thirds. https://www.adobe.com/creativecloud/photography/discover/rule-of-thirds.html

  • Albers, J. (2017). Preliminary course: Albers; concerning fundamental design. In H. Bayer, W. Gropius, & I. Gropius (Eds.), Bauhaus, 1919‒1928 (pp. 116123). Museum of Modern Art. (Original work published 1938)

    • Search Google Scholar
    • Export Citation
  • Allen, S. (2019). Master Fibonacci: The man who changed math. Fibonacci Inc.

  • Areljung, S. (2023). Five ways of integrating arts and science: A framework for planning and analyzing arts–science education in early childhood. Studies in Art Education, 64(1), 922. https://doi.org/10.1080/00393541.2022.2154522

    • Search Google Scholar
    • Export Citation
  • Barr, A. H., Jr. (2017). Preface. In H. Bayer, W. Gropius, & I. Gropius (Eds.), Bauhaus, 1919‒1928 (pp. 110). Museum of Modern Art. (Original work published 1938)

    • Search Google Scholar
    • Export Citation
  • Bayer, H., Gropius, W., & Gropius, I. (2017). Bauhaus, 1919‒1928. Museum of Modern Art. (Original work published 1938) https://doi.org/10.2307/1574173

    • Search Google Scholar
    • Export Citation
  • Bell, C. (1913). Post-impressionism and æsthetics. The Burlington Magazine for Connoisseurs, 22(118), 226230.

  • Brown, D. (2006). The Da Vinci code. Doubleday.

  • Bullot, N. J., Seeley, W. P., & Davies, S. (2017). Art and science: A philosophical sketch of their historical complexity and codependence. The Journal of Aesthetics and Art Criticism, 75(4), 453463. https://doi.org/10.1111/jaac.12398. Top of FormBottom of Form

    • Search Google Scholar
    • Export Citation
  • Burnard, P., & Colucci-Gray, L. (Eds.). (2020). Why science and art creativities matter: (Re)configuring STEAM for future-making education. Brill. https://doi.org/10.1163/9789004421585

    • Search Google Scholar
    • Export Citation
  • Caplin, S. (2008). Art and design in Photoshop. Routledge. https://doi.org/10.4324/9780080928289

  • Clapp, E. P., & Jimenez, R. L. (2016). Implementing STEAM in maker-centered learning. Psychology of Aesthetics, Creativity, and the Arts, 10(4), 481491. https://doi.org/10.1037/aca0000066

    • Search Google Scholar
    • Export Citation
  • Cohen, E., & Lloyd, S. (2014). Disciplinary evolution and the rise of the transdiscipline. Informing Science: The International Journal of an Emerging Transdiscipline, 17, 189215. https://doi.org/10.28945/2045

    • Search Google Scholar
    • Export Citation
  • Dietrich, P., & Knieper, T. (2022). (Neuro)aesthetics: Beauty, ugliness, and ethics. PsyCh Journal, 11(5), 619627. https://doi.org/10.1002/pchj.478

    • Search Google Scholar
    • Export Citation
  • Freeland, C. (2001). But is it art? Oxford University Press.

  • Herro, D., Quigley, C., & Cian, H. (2019). The challenges of STEAM instruction: Lessons from the field. Action in Teacher Education, 41(2), 172190. https://doi.org/10.1080/01626620.2018.1551159

    • Search Google Scholar
    • Export Citation
  • Hunter-Doniger, T., & Walkup, N. (Eds.). (2024). STEAM Education: An interdisciplinary look at art in the curriculum. National Art Education Association.

    • Search Google Scholar
    • Export Citation
  • Kim, H. (2022). Re‐framing Anni Albers and Bauhaus. International Journal of Art & Design Education, 41(3), 414426. https://doi.org/10.1111/jade.12423

    • Search Google Scholar
    • Export Citation
  • Lai, A. (2024, April 05). Reviewing and reimagining research on STEAM education. [Slide presentation]. The 2024 National Art Education Association Convention, Minneapolis, Minnesota, United States.

    • Search Google Scholar
    • Export Citation
  • Liao, C. (2016). From interdisciplinary to transdisciplinary: An arts-integrated approach to STEAM education. Art Education, 69(6), 4449. https://doi.org/10.1080/00043125.2016.1224873

    • Search Google Scholar
    • Export Citation
  • Marples, C. R., & Williams, P. M. (2022). The golden ratio in nature: A tour across length scales. Symmetry, 14(10), 2059. https://doi.org/10.3390/sym14102059

    • Search Google Scholar
    • Export Citation
  • Marshall, J. (2014). Transdisciplinarity and art integration: Toward a new understanding of art-based learning across the curriculum. Studies in Art Education, 55(2), 104127. https://doi.org/10.1080/00393541.2014.11518922

    • Search Google Scholar
    • Export Citation
  • Mertler, C. A. (2019). Action research: Improving schools and empowering educators (6th ed.). Sage.

  • Miller, J. A. (2019). Elementary school. In E. Lupton & J. A. Miller (Eds.), The ABC’s of [triangle, square, circle]: The Bauhaus and design theory. (pp. 1027). Princeton Architectural Press.

    • Search Google Scholar
    • Export Citation
  • Pirrie, A. (2020). Where science ends, art begins? Critical perspectives on the development of STEAM in the new climatic regime. In P. Burnard & L. Colucci-Gray (Eds.), Why science and art creativities matter: (Re)configuring STEAM for future-making education (pp. 1934). Brill. https://doi.org/10.1163/9789004421585_003

    • Search Google Scholar
    • Export Citation
  • Siebenbrodt, M., & Schöbe, L. (2009). Bauhaus. Parkstone International.

Metrics

All Time Past 365 days Past 30 Days
Abstract Views 5 5 4
Full Text Views 0 0 0
PDF Views & Downloads 0 0 0