Purchase instant access (PDF download and unlimited online access):
Aulakh, M.S., Bodenbender, J., Wassmann, R. and Rennenberg, H., 2000a. Methane transport capacity of rice plants. I. Influence of methane concentration and growth stage analyzed with an automated measuring system. Nutrient Cycling in Agroecosystems 58: 357-366.
Aulakh, M.S., Bodenbender, J., Wassmann, R. and Rennenberg, H., 2000b. Methane transport capacity of rice plants. II. Variations among different rice cultivars and relationship with morphological characteristics. Nutrient Cycling in Agroecosystems 58: 367-375.
Aulakh, M.S., Wassmann, R., Rennenberg, H. and Fink, S., 2000c. Pattern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars. Plant Biology 2: 182-194.
Aulakh, M.S., Wassmann, R. and Rennenberg, H., 2002. Methane transport capacity of twenty-two rice cultivars from five major Asian rice-growing countries Agriculture. Ecosystems and Environment 91: 59-71.
Butterbach-Bahl, K., Papen, H. and Rennenberg, H., 1997. Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environmental 20: 1175-1183.
Comissão de Química e Fertilidade do Solo – NRS (CQFS/NRS), 2004. Manual de adubação e calagem para os Estados do Rio Grande do Sul e de Santa Catarina. 10 sd. SBCS – Núcleo Regional Sul/ UFRGS, Porto Alegre, Brazil.
Costa, F.S., Bayer, C., Lima, M.A., Frighetto, R.T.S., Macedo, V.R.M. and Marcolin, E., 2008. Variação diária da emissão de metano em solo cultivado com arroz irrigado no Sul do Brasil. Ciência Rural 38: 2049-2053.
Das, K. and Baruah, K.K., 2008. Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant. Physiologia Plantarum 134: 303-312.
Evans, D.E., 2003. Aerenchyma formation. New Phytologist 161: 35-49.
Gogoi, N., Baruah, K.K., Gogoi, B. and Gupta, P.K., 2005. Methane emission characteristics and its relations with plant and soil parameters under irrigated rice ecosystem of northeast India. Chemosphere 59: 1677-1684.
Gomes, J., Bayer, C., Costa, F.S., Piccolo, M.C., Vieira, F.C.B. and Six, J., 2009. Soil nitrous oxide emission as affected by long term tillage, crop rotations and fertilization in a subtropical environment. Soil Tillage Research 101: 36-44.
Huang, Y., Jiao, Y., Zong, L.G., Zheng, X.H., Sass, R.L. and Fisher, F.M., 2002. Quantitative dependence of methane emission on soil properties. Nutrient Cycling in Agroecosystems 64: 157-167.
Intergovernmental Panel on Climate Change (IPCC), 2007. Climate change 2007: the physical science basis: summary for policymakers. Intergovernmental Panel on Climate Change, Geneva, Switzerland.
Johnson, J., Franzluebbers, A.J., Weyers, S.L. and Reicosky, D.C., 2007. Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution 150: 107-124.
Le Mer, J. and Roger, P., 2001. Production, oxidation, emission and consumption of methane by soils: a review. European Journal Soil Biology 37: 25-50.
Lindau, C.W. and Bollich, P.K., 1993. Methane emissions from Louisiana first and ratoon crop rice. Soil Science 156: 42-48.
Marchesan, E., 2006. Características de cultivares de arroz irrigado. UFSM, Santa Maria, Brazil.
Mitra, S., Jain, M.C., Kumar, S., Bandyopadhyay, S.K. and Kalra, N., 1999. Effect of rice cultivars on methane emission. Agriculture, Ecosystems and Environment 73: 177-183.
Mosier, A.R., 1989. Chamber and isotopic techniques. In: Andreae, M.O. and Schimel, D.S. (eds.) Exchange of traces gases between terrestrial ecosystems and the atmosphere. Report of the Dahlem Workshop. John Wiley and Sons, Berlin, Germany, pp.175-187.
Nouchi, I., Mariko, S. and Aoki, K., 1990. Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiology 94: 59-66.
Silva, L.S., Griebeler, G., Moterle, D.F., Bayer, C., Zschornack, T. and Pocojeski, E., 2011. Dinâmica da emissão de CH4 em solos representativos do cultivo de arroz irrigado no sul do brasil. Revista Brasileira de Ciência do Solo 35: 473-483.
Terres, A.L.S., Fagundes, P.R.R., Machado, M.O., Magalhães Jr., A.M. and Nunes, C.D.M., 2004. Melhoramento genético e cultivares de arroz irrigado. In: Gomes, A.S. and Magalhães Jr., A.M. (eds.) Arroz irrigado no Sul do Brasil. Embrapa Informação Tecnológica, Brasília, Brazil, pp.161-235.
Wang, B., Neue, H.U. and Samonte, H.P., 1997a. Effect of cultivar difference (IR72, IR65598 and Dular) on methane emission. Agriculture, Ecosystems and Environment 62: 31-40.
Wang, B., Neue, H.U. and Samonte, H.P., 1997b. Role of rice in mediating methane emission. Plant Soil 189: 107-115.
Wassmann, R., Neue, H.U., Bueno, C., Lantin, R.S., Alberto, M.C.R., Buendia., L.V., Bronson, K., Papen, H. and Rennenberg, H., 1998. Methane production capacities of different rice soils derived from inherent and exogenous substrates. Plant and Soil 203: 227-237.
Bamforth, S.M. and Singleton, L., 2005. Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of Chemical Technology and Biotechnology 80: 723-736.
Biemelt, S., Keetman, U., Mock, H.P. and Grimm, B., 2000. Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant Cell and Environment 23: 135-144.
Biswas, D.K., Xu, H., Li, Y.G., Liu, M.Z., Chen, Y.H., Sun, J.Z. and Jiang, G.M., 2008. Assessing the genetic relatedness of higher ozone sensitivity of modern wheat to its wild and cultivated progenitors/ relatives. Journal of Experimental Botany 59: 951-963.
Cho, U.H. and Seo, N.H., 2005. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science 168: 113-120.
David, B.L., Wolfram, S. and Justin, C.R., 2011. Climate trends and global crop production since 1980. Science 333: 616-617.
Dentener, F., Stevenson, D., Ellingsen, K., Van Noije, T., Schultz, M., Amann, M., Atherton, C., Bell, N., Bergmann, D., Bey, I., Bouwman, L., Butler, T., Cofala, J., Collins, B., Drevet, J., Doherty, R., Eickhout, B., Eskes, H., Fiore, A., Gauss, M., Hauglustaine, D., Horowitz, L., Isaksen, I.S.A., Josse, B., Lawrence, M., Krol, M., Lamarque, J.F., Montanaro, V., Muller, J.F., Peuch, V.H., Pitari, G., Pyle, J., Rast, S., Rodriguez, J., Sanderson, M., Savage, N.H., Shindell, D., Strahan, S., Szopa, S., Sudo, K., Van Dingenen, R., Wild, O. and Zeng, G., 2006. The global atmospheric environment for the next generation. Environmental Science and Technology 40: 3586-3594.
Di Cagno, R., Guidi, L., De Gara, L. and Soldatini, G.F., 2001. Combined cadmium and ozone treatments affect photosynthesis and ascorbate-dependent defences in sunflower. New Phytologist 151: 627-636.
Ding, A.F., Pan, G.X. and Li, L.Q., 2007. Contents and sources of PAHs in top soils of farmlands in parts of Jiangsu, China. Journal of Ecology and Rural Environment 23: 71-75.
Dionisio-Sese, M.L. and Tobita, S., 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Science 135: 1-9.
Feng, Z.Z. and Kobayashi, K., 2009. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmospheric Environment 43: 1510-1519.
Feng, Z.Z., Kobayashi, K. and Ainsworth, E.A., 2008. Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Global Change Biology 14: 2696-2708.
Feng, Z.Z., Pang, J., Kobayashi, K., Zhu, J.G. and Ort, D.R., 2011. Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions. Global Change Biology 17: 580-591.
Feng, Z.Z., Pang, J., Nouchi, I., Kobayashi, K., Yamakawa, T. and Zhu J.G., 2010. Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions. Environmental Pollution 158: 3539-3545.
Foyer, C.H. and Noctor, G., 2000. Oxygen processing in photosynthesis: regulation and signaling. New Phytologist 146: 359-388.
Fumagalli, I., Gimeno, B.S., Velissariou, D., De Temmerman, L. and Mills, G., 2001. Evidence of ozone-induced adverse effects on crops in the Mediterranean region. Atmospheric Environment 35: 2583-2587.
Gao, Y.Z. and Collins C.D., 2009. Uptake pathways of polycyclic aromatic hydrocarbons in white clover. Environmental Science and Technology 43: 6190-6195.
García-Limones, C., Hervás, A., Navas-Cortés, J.A., Jiménez-Diaz, R.M. and Tena, M., 2002. Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f.sp. ciceris. Physiological and Molecular Plant Pathology 61: 325-337.
International Agency for Research on Cancer (IARC), 1983. Polynuclear aromatic hydrocarbons. Part 1. Chemical, environmental and experimental data. Monographs on the evaluation of the carcinogenic risk of chemicals to humans Vol. 32. WHO, Lyon, France.
Johnsen, A.R., Wick, L.Y. and Harms, H., 2005. Principles of microbial PAH-degradation in soil. Environmental Pollution 133: 71-84.
Li, X.J., Li, P.J., Lin, X., Gong, Z.Q., Fan, S.X. and Zheng, L., 2008. Spatial distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in soils from typical oil-sewage irrigation area, Northeast China. Environmental Monitoring and Assessment 143: 257-265.
Li, K.Q., Liu, Z.G., Lu, X.L., Yang, J.C., Zhang, Z.J. and Zhu, Q.S., 2003. Uptake and distribution of cadmium in different rice cultivars. Journal of Agro-Environment Science 22: 529-532.
Lin, C.C. and Kao, C.H., 2002. Osmotic stress-induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Growth Regulation 37: 177-183.
Lin, G.F., Weigel, S., Tang, B., Schulz, C. and Shen, J.H., 2011. The occurrence of polycyclic aromatic hydrocarbons in Peking duck: relevance to food safety assessment. Food Chemistry 129: 524-527.
Liu, H., Weisman, D., Ye, Y.B., Cui, B., Huang, Y.H., Colon-Carmona, A. and Wang, Z.H., 2008. An oxidative stress response to polycyclic aromatic hydrocarbons exposure is rapid and complex in Arabidopsis thaliana. Plant Science 176: 375-382.
Lobell, D.B., Schlenker, W. and Costa-Roberts, J., 2011. Climate trends and global crop production since 1980. Science 333: 616-620.
Lu, T., He, X.Y., Chen, W., Yan, K. and Zhao, T.H., 2009. Effects of elevated O3 and/or elevated CO2 on lipid peroxidation and antioxidant systems in Ginkgo biloba leaves. Bulletin of Environmental Contamination and Toxicology 83: 92-96.
Masten, S.J. and Davies, S.H.R., 1997. Efficacy of in-situ ozonation for the remediation of PAH contaminated soils. Journal of Contaminant Hydrology 28: 327-335.
Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J. and Zhao, Z.C., 2007. Global climate projections. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L. (eds.) Climate change: the physical basis. Contribution of working group I to the fourth assessment report of IPCC on climate change. Cambridge University Press, Cambridge, UK.
Mills, G., Buse, A., Gimeno, B., Bermejo, V., Holland, M., Emberson, L. and Pleijel, H., 2007. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmospheric Environment 41: 2630-2643.
Morgan, P.B., Mies, T.A., Bollero, G.A., Nelson, R.L. and Long, S.P., 2006. Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytologist 170: 333-343.
Mueller, J.G., Cerniglia, C.E. and Pritchard, P.H., 1996. Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Crawford, R.L. and Crawford, P.L. (eds.) Bioremediation: principles and applications. Cambridge University Press, Cambridge, UK, pp. 125-194.
Noctor, G. and Foyer, C.H., 1998. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49: 249-279.
O’Mahony, M.M., Dobson, A.D.W., Barnes, J.D. and Singleton, I., 2006. The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere 63: 307-314.
Rai, R. and Agrawal, M., 2008. Evaluation of physiological and biochemical responses of two rice (Oryza sativa L.) cultivars to ambient air pollution using open top chambers at a rural site in India. Science of the Total Environment 407: 679-691.
Ryang, S.Z., Woo, S.Y., Kwon, S.Y., Kim, S.H., Lee, S.H., Kim, K.N. and Lee, D.K., 2009. Changes of net photosynthesis, antioxidant enzyme activities, and antioxidant contents of Liriodendron tulipifera under elevated ozone. Photosynthetica 47: 19-25.
Sandermann, H., 1996. Ozone and plant health. Annual Review of Phytopathology 34: 347-366.
Sarkar, A. and Agrawal, S.B., 2010. Elevated ozone and two modern wheat cultivars: an assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameters. Environmental and Experimental Botany 69: 328-337.
Sarkar, A., Rakwal, R., Agrawal, S.B., Shibato, J., Ogawa, Y., Yoshida, Y., Agrawal, G.K. and Agrawal, M., 2010. Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches. Journal of Proteome Research 9: 4565-4584.
Shi, G.Y., Yang, L.X., Wang, Y.X., Kobayashi, K., Zhu, J.G., Tang, H.Y., Pan, S.T., Chen, T., Liu, G. and Wang, Y.L., 2009. Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions. Agriculture Ecosystems and Environment 131: 178-184.
Singh, E., Tiwari, S. and Agrawal, M., 2010. Variability in antioxidant and metabolite levels, growth and yield of two soybean varieties: an assessment of anticipated yield losses under projected elevation of ozone. Agriculture Ecosystems and Environment 135: 168-177.
Tao, Y.Q., Zhang, S.Z., Zhu, Y.G. and Christie, P., 2009. Uptake and acropetal translocation of polycyclic aromatic hydrocarbons by wheat (Triticum aestivum L.) grown in field-contaminated soil. Environmental Science and Technology 43: 3556-3560.
Verma, S. and Dubey, R.S., 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science 164: 645-655.
Vingarzan, R., 2004. A review of surface ozone background levels and trends. Atmospheric Environment 38: 3431-3442.
Wang, H.X., Zhou, L.J. and Tang, X.Y., 2006. Ozone concentrations in rural regions of the Yangtze Delta in China. Journal of Atmospheric Chemistry 54: 255-265.
Wang, X.K., Manning, W., Feng, Z.W. and Zhu, Y.G., 2007. Ground-level ozone in China: distribution and effects on crop yields. Environmental Pollution 147: 394-400.
Wang, X.K., Zheng, Q.W., Yao, F.F., Chen, Z., Feng, Z.Z. and Manning, W.J., 2007. Assessing the impact of ambient ozone on growth and yield of a rice (Oryza sativa L.) and a wheat (Triticum aestivum L.) cultivar grown in the Yangtze Delta, China, using three rates of application of ethylenediurea (EDU). Environmental Pollution 148: 390-395.
Ye, B.X., Zhang, Z.H. and Mao, T., 2006. Pollution sources identification of polycyclic aromatic hydrocarbons of soils in Tianjin area, China. Chemosphere 64: 525-534.
Zhou, X.J., 2004. The spatial and temporal variation of trace gases in the lower atmosphere in Yangze Delta as well as the corresponding mechanism. In: Liu, P. and Wang, G.M. (eds.) Study of the interaction between the lower atmosphere and ecosystem in Yangze Delta of China. Monographs of Researches Sponsored by Natural Science Foundation of China-earth Science Series. Meteorology Press, Beijing, China, pp. 48-155.
Adams, J.M., Faure, H., Fauredenard, L., Mcglade, J.M. and Woodward, F.I., 1990. Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature 348: 711-714.
Akiyama, H. and Tsuruta, H., 2003. Effect of organic matter application on N2 O, NO, and NO2 fluxes from an Andisol field. Global Biogeochemical Cycles 17: 1100-1111.
Akiyama, H., Yan, X.Y. and Yagi, K., 2006. Estimations of emission factors for fertilizer-induced direct N2 O emissions from agricultural soils in Japan: Summary of available data. Soil Science and Plant Nutrition 52: 774-787.
Anonymous, 2004. Handbook of animal waste management and utilization in Hokkaido. Hokkaido Prefectural Experiment Stations and Hokkaido Animal Research Center, Sapporo, Japan, pp. 64-67.
Baer, S.G. and Blair, J.M., 2008. Grassland establishment under varying resource availability: a test of positive and negative feedback. Ecology 89: 1859-1871.
Bhogal, A., Nicholson, F.A., Young, I., Sturrock, C., Whitmore, A.P. and Chambers, B.J., 2011. Effects of recent and accumulated livestock manure carbon additions on soil fertility and quality. European Journal of Soil Biology 62: 174-181.
Bouwman, A.F., 1990. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: Bouwman A.F (ed.) Soils and the greenhouse effect. John Wiley and Sons, Chichester, UK, pp. 61-127.
Bouwman, A.F., Boumans, L.J.M. and Batjes, N.H., 2002a. Emissions of N2 O and NO from fertilized fields: summary of available measurement data. Global Biogeochemical Cycles 16: 1058-1067.
Bouwman, A.F., Boumans, L.J.M. and Batjes, N.H., 2002b. Modeling global annual N2 O and NO emissions from fertilized fields. Global Biogeochemical Cycles 16: 1080-1091.
Bulluck, L.R., Brosius, M., Evanylo, G.K. and Ristaino, J.B., 2002. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology 19: 147-160.
Chadwick, D.R., Pain, B.F. and Brookman, S.K.E., 2000. Nitrous oxide and methane emissions following application of animal manure to grassland. Journal of Environmental Quality 29: 277-287.
Clayton, H., McTaggart, I.P., Parker, J., Swan, L. and Smith, K.A., 1997. Nitrous oxide emissions from fertilised grassland: a 2-year study of the effects of N fertiliser form and environmental conditions. Biology and Fertility of Soils 25: 252-260.
Conant, R.T., Paustian, K. and Elliott, E.T., 2001. Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications 11: 343-355.
Delve, R.J., Cadisch, G., Tanner, J.C., Thorpe, W., Thorne, P.J. and Giller, K.E., 2001. Implications of livestock feeding management on soil fertility in the smallholder farming systems of sub-Saharan Africa. Agriculture, Ecosystems and Environment 84: 227-243.
Dobbie, K.E., McTaggart, I.P. and Smith, K.A., 1999. Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors. Journal of Geophysical Research 104 (D21): 26891-26899.
Drury, C.F., McKenney, D.J. and Findlay, W.I., 1991. Relationships between denitrification, microbial biomass and indigenous soil properties. Soil Biology and Biochemistry 23: 751-755.
Edmeades, D.C., 2003. The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutrient Cycling in Agroecosystems 66: 165-180.
Gilmanov, T.G., Soussana, J.F., Aires, L., Allard, V., Ammann, C., Balzarolo, M., Barcza, Z., Bernhofer, C., Campbell, C.L., Cernusca, A., Cescatti, A., Clifton-Brown, J., Dirks, B.O.M., Dore, S., Eugster, W, Fuhrer, J., Gimeno, C., Gruenwald, T., Haszpra, L., Hensen, A., Ibrom, A., Jacobs, A.F.G., Jones, M.B., Lanigan, G., Laurila, T., Lohila, A., Manca, G., Marcolla, B., Nagy, Z., Pilegaard, K., Pinter, K., Pio, C., Raschi, A., Rogiers, N., Sanz, M.J., Stefani, P., Sutton, M., Tuba, Z., Valentini, R., Williams, M.L. and Wohlfahrt, G., 2007. Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agriculture, Ecosystems and Environment 121: 93-120.
Ginting, D., Kessavalou, A., Eghball, B. and Doran, J.W., 2003. Greenhouse gas emissions and soil indicators four years after manure and compost applications. Journal of Environmental Quality 32: 23-32.
Haynes, R.J. and Naidu, R., 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutrient Cycling in Agroecosystems 51: 123-137.
Hirata, R., Miyata, A., Mano, M., Shimizu, M., Arita, T., Kouda, Y., Matsuura, S., Niimi, M., Mori, A., Saigusa, T., Hojito, M., Kawamura, O. and Hatano, R., 2013. Carbon dioxide exchange at four intensively managed grassland sites across different climate zones of Japan and the influence of manure application on ecosystem carbon and greenhouse gas budgets. Agricultural and Forest Meteorology 177: 57-68.
Hirata, R., Saigusa, N., Yamamoto, S., Ohtani, Y., Ide, R., Asanuma, J., Gamo, M., Hirano, T., Kondo, H., Kosugi, Y., Li, S.G., Nakai, Y., Takagi, K., Tani, M. and Wang, H.M., 2008. Spatial distribution of carbon balance in forest ecosystems across East Asia. Agricultural and Forest Meteorology 148: 761-775.
Intergovernmental Panel on Climate Change (IPCC), 2007. Climate changes 2007: the physical science basis. Cambridge University Press, Cambridge, UK.
Jager, N., Stange, C.F., Ludwig, B. and Flessa, H., 2011. Emission rates of N2 O and CO2 from soils with different organic matter content from three long-term fertilization experiments-a laboratory study. Biology and Fertility of Soils 47: 483-494.
Jin, T., Shimizu, M., Marutani, S., Desyatkin, A.R., Iizuka, N., Hata, H. and Hatano, R., 2010. Effect of chemical fertilizer and manure application on N2 O emission from reed canary grassland in Hokkaido, Japan. Soil Science and Plant Nutrition 56: 53-65.
Kammann, C., Grunhage, L., Jager, H.J. and Wachinger, G., 2001. Methane fluxes from differentially managed grassland study plots: the important role of CH4 oxidation in grassland with a high potential for CH4 production. Environmental Pollution 115: 261-273.
Kirschbaum, M.U.F., 1995. The temperature-dependence of soil organic-matter decomposition, and the effect of global warming on soil organic-c storage. Soil Biology and Biochemistry 27: 753-760.
Lal, R., 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123: 1-22.
Le Mer, J. and Roger, P., 2001. Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology 37: 25-50.
Lloyd, J. and Taylor, J.A., 1994. On the temperature-dependence of soil respiration. Functional Ecology 8: 315-323.
Maag, M. and Vinther, F.P., 1996. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Applied Soil Ecology 4: 5-14.
Mano, M., Miyata, A., Yasuda, Y., Nagai, H., Yamada, T., Ono, K., Saito, M. and Kobayashi, Y., 2007. Quality control for the open-path eddy covariance data. Journal of Agricultural Meteorology 63: 125-138.
Mishima, S., 2001. Recent trend of nitrogen flow associated with agricultural production in Japan. Soil Science and Plant Nutrition 47: 157-166.
Mishima, S., Taniguchi, S. and Komada, M., 2006. Recent trends in nitrogen and phosphate use and balance on Japanese farmland. Soil Science and Plant Nutrition 52: 556-563.
Mori, A. and Hojito, M., 2011. Nitrous oxide and methane emissions from grassland treated with bark- or sawdust-containing manure at different rates. Soil Science and Plant Nutrition 57: 138-149.
Mori, A. and Hojito, M., 2012. Effect of combined application of manure and fertilizer on N2 O fluxes from a grassland soil in Nasu, Japan. Agriculture, Ecosystems and Environment 160: 40-50.
Mori, A., Hojito, M., Kondo, H., Matsunami, H. and Scholefield, D., 2005. Effects of plant species on CH4 and N2 O fluxes from a volcanic grassland soil in Nasu, Japan. Soil Science and Plant Nutrition 51: 19-27.
Mosier, A.R., 1998. Soil processes and global change. Biology and Fertility of Soils 27: 221-229.
Mosier, A.R., Parton, W.J., Valentine, D.W., Ojima, D.S., Schimel, D.S. and Delgado, J.A., 1996. CH4 and N2 O fluxes in the Colorado shortgrass steppe: 1. Impact of landscape and nitrogen addition. Global Biogeochemical Cycles 10: 387-399.
Mosier, A.R., Schimal, D., Valentine, D., Bronson, K. and Parton, W., 1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature 350: 330-332.
Murwira, H.K., Kirchmann, H. and Swift, M.J., 1990. The effect of moisture on the decomposition rate of cattle manure. Plant and Soil 122, 197-199.
Powlson, D.S., Goulding, K.W.T., Willison, T.W., Webster, C.P. and Hutsch, B.W., 1997. The effect of agriculture on methane oxidation in soil. Nutrient Cycling in Agroecosystems 49: 59-70.
Prioul, J.L. and Chartier, P., 1977. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: a critical analysis of the methods used. Annals of Botany 41: 789-800.
R Development Core Team, 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org.
Sala, O.E., Parton, W.J., Joyce, L.A. and Lauenroth, W.K., 1988. Primary production of the central grassland region of the United-States. Ecology 69: 40-45.
Shiga, H., Ohyama, N., Maeda, K. and Suzuki, M., 1985. An evaluation of different organic materials based on their decomposition pattern in paddy soils. Bulletin of National Agricultural Research Center 5: 1-19.
Shimizu, M., Hatano, R., Arita, T., Kouda, Y., Mori, A., Matsuura, S., Niimi, M., Jin, T., Desyatkin, A.R., Kawamura, O., Hojito, M. and Miyata, A., 2013. The effect of fertilizer and manure application on CH4 and N2 O emissions from managed grasslands in Japan. Soil Science and Plant Nutrition 59: 69-86.
Shimizu, M., Marutani, S., Desyatkin, A.R., Jin, T., Hata, H. and Hatano, R., 2009. The effect of manure application on carbon dynamics and budgets in a managed grassland of Southern Hokkaido, Japan. Agriculture, Ecosystems and Environment 130: 31-40.
Shimizu, M., Marutani, S., Desyatkin, A.R., Jin, T., Nakano, K., Hata, H. and Hatano, R., 2010. Nitrous oxide emissions and nitrogen cycling in managed grassland in Southern Hokkaido, Japan. Soil Science and Plant Nutrition 56: 676-688.
Soussana, J.F., Fuhrer, J., Jones, M. and van Amstel, A., 2007. The greenhouse gas balance of grasslands in Europe. Agriculture, Ecosystems and Environment 121: 1-4.
Soussana, J.F., Loiseau, P., Vuichard, N., Ceschia, E., Balesdent, J., Chevallier, T. and Arrouays, D., 2004. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use and Management 20: 219-230.
Toma, Y. and Hatano, R., 2007. Effect of crop residue C:N rate on N2 O emissions from Gray Lowland soil in Mikasa, Hokkaido, Japan. Soil Science and Plant Nutrition 53: 198-205.
Ueyama, M., Hirata, R., Mano, M., Hamotani, K., Harazono, Y., Hirano, T., Miyata, A., Takagi, K. and Takahashi, Y., 2012. Influences of various calculation options on heat, water and carbon fluxes determined by open- and closed-path eddy covariance methods. Tellus B 64: 19048-19056.
Van den Pol-Van Dasselaar, A., Van Beusichem, M.L. and Oenema, O., 1998. Effects of soil moisture content and temperature on methane uptake by grasslands on sandy soils. Plant and Soil 204: 213-222.
Velthof, G.L., Oenema, O., Postma, R. and Van Beusichem, M.L., 1997. Effects of type and amount of applied nitrogen fertilizer on nitrous oxide fluxes from intensively managed grassland. Nutrient Cycling in Agroecosystems 46: 257-267.
White, R., Murray, S. and Rohweder, M., 2000. Pilot analysis of global ecosystems: grassland ecosystems. World Resources Institute, Washington, DC, USA.
Yamulki, S., Harrison, R.M., Goulding, K.W.T. and Webster, C.P., 1997. N2 O, NO and NO2 fluxes from a grassland: effect of soil pH. Soil Biology and Biochemistry 29: 1199-1208.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 34 | 30 | 8 |
Full Text Views | 1 | 0 | 0 |
PDF Views & Downloads | 0 | 0 | 0 |
Terms and Conditions | Privacy Statement | Cookie Settings | Accessibility | Legal Notice | Sitemap | Copyright © 2016-2025