Chapter 8. Dynamics of gross nitrogen transformations related to particle-size soil organic fractions in the southeastern Pampa of Argentina

In: Sustainable agroecosystems in climate change mitigation
Authors:
C. Videla
Search for other papers by C. Videla in
Current site
Google Scholar
PubMed
Close
,
P.C. Trivelin
Search for other papers by P.C. Trivelin in
Current site
Google Scholar
PubMed
Close
,
G.A. Studdert
Search for other papers by G.A. Studdert in
Current site
Google Scholar
PubMed
Close
, and
J.A. Bendasolli
Search for other papers by J.A. Bendasolli in
Current site
Google Scholar
PubMed
Close

Purchase instant access (PDF download and unlimited online access):

$40.00

We analysed the effect of soil management and depth on potential gross nitrogen mineralization (GMR), nitrification (GNR) and consumption rates (GCR), and their relationships with organic matter particle-size fractions (≯200 ìm, light and heavy, 50-200 ìm, light and heavy, 20-50 ìm and <20 ìm). The experimental site was under conventional tillage for 18 years and subsequently converted to no till (NT), pasture (PP) or continued under conventional tillage (CT). Two sampling depths (0-10 and 10- 20 cm) were analysed. Gross processes were estimated through 15N dilution technique. GMR values ranged between 0.532 to 2.598 mg N/kg/d. The PP-GMR for the 0-10 cm layer was higher than CT at same depth and NT for 10-20 cm depth. No tillage showed similar results as PP, but at lower rates. Ammonium consumption was an important process for the three management systems and analysed depths. For all management systems, it was found that 82-95% of organic-carbon (C) and 87-97% of total nitrogen (N) was located in the <50 ìm fraction, indicating a high physical protection of organic matter (OM) and suggesting low turnover rates. Pasture accumulated 112% more C and 116% more N than CT in the ≯50 ìm light fraction. No-tillage was not significantly different from CT for all the analysed variables. Management systems did not modify the <50 ìm fraction. Simple relationships between C, N and the C/N ratio of the OM fractions explained less than 60% of the variability on GMR and GCR. The C content in the 50 to 200 ìm and ≯200 ìm light fraction were frequently associated with GMR and GCR. When management systems were analysed separately, multiple regression models explained more than 90% of the variability. For more conservative management practices (PP and NT), the C and N contents in labile fractions (50-200 ìm and ≯200 ìm) accounted for most of the variability of GMR and GCR, while for CT, the finest and slow recycling fractions explained GMR variability.

  • Collapse
  • Expand
  • Accoe, F., Boeckx, P., Busschaert, J., Hofman, G. and Van Cleemput, O., 2004. Gross transformations rates and net mineralisation rates related to the C and N contents of soil organic matter fractions in grasslands soils of different age. Soil Biology and Biochemistry 36: 2075-2087.

  • Alvarez, C.R., Alvarez, R., Grigera, M.S. and Lavado, R.S., 1998. Associations between organic matter fractions and the active soil microbial biomass. Soil Biology and Biochemistry 30: 767-773.

  • Álvarez, R. and Steinbach, H., 2009. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil and Tillage Research 104: 1-15.

  • Alvarez, R., Díaz, R., Barbero, N., Santanatoglia, O. and Blotta, L., 1995. Soil organic carbon, microbial biomass and CO2 -C production from three tillage systems. Soil and Tillage Research 33: 17-28.

  • Andrade, F.H., Echeverría, H.E., González, N.S. and Uhart, S.A., 2002. Requerimientos de nutrientes minerales. In: Andrade, F.H. and Sadras, V.O. (eds.) Bases para el Manejo del Maíz, el Girasol y la soja. Editorial Medica Panamericana Sa, Buenos Aires, Argentina, pp. 211-237.

  • Andriulo, A., Guerif, J. and Mary, B., 1999. Evolution of soil carbon with various cropping sequences on the rolling pampas. Determination of carbon origin using variations in natural13 C abundance. Agronomie 19: 349-364.

  • Aparicio, V. and Costa, J.L., 2007. Soil quality indicators under continuous cropping systems in the Argentinean Pampas. Soil and Tillage Research 96: 155-165.

  • Argentinean Association of Producers under No-tillage (AAPRESID), 2013. Statistics of surface under no-tillage in Argentina. Available at: http://www.aapresid.org.ar.

  • Barak, P., Molina, J.A.E., Hadas, A. and Clapp, C.E., 1990. Mineralization of amino acids and evidence of direct assimilation of organic nitrogen. Soil Science Society American Journal 54: 769-774.

  • Barraclough, D., 1991. The use of mean pool abundances to interpret15 N tracer experiments. Plant and Soil 131: 89-96.

  • Barraclough, D., 1997. The direct or MIT route for nitrogen immobilization: a15 N mirror image study with leucine and glycine. Soil Biology and Biochemistry 29: 101-108.

  • Barraclough, D., Geens, E.L., Davies, G.P. and Maggs, J.M., 1985. Fate of fertilizer nitrogen. 3. The use of single and double labeled N-15 ammonium-nitrate to study nitrogen uptake by ryegrass. Journal of Soil Science 36: 593-603.

  • Barrie, A. and Prosser, S.J., 1996. Automated analysis of light-element stable isotopes by isotope ratio mass spectrometry. In: Boutton, T.W. and Yamasaki, S. (eds.) Mass spectrometry of soils. Marcel Dekker Inc., New York, NY, USA, pp.1-46.

  • Barrios, E., Buresh, R.J. and Sprent, J.I., 1996. Nitrogen mineralization in density fractions of soil organic matter from maize and legume cropping systems. Soil Biology and Biochemistry 28: 1459-1465.

  • Berardo, A., 1994. Aspectos generales de fertilización y manejo del trigo en el área de influencia de la Estación Experimental INTA-Balcarce. Boletín Técnico No. 28. INTA, San José de Balcarce, Argentina.

  • Booth, M.S., Stark, J.M. and Rastetter, E., 2005. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecological Monographs 75: 139-157.

  • Boutton, T.W., 1996. Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. In: Boutton T.W. and Yamasaki, S. (eds.) Mass Spectrometry of Soils Marcel Dekker Inc., New York, NY, USA, pp. 47-82.

  • Bremner, J.M., 1965. Inorganic forms of nitrogen. In: Black, C.A. and Evans, D.D. (eds.) Methods of soil analysis. American Society of Agronomy, Madison, WI, USA, pp. 1149-1178.

  • Buyanosky, G.A., Aslam, M. and Wagner, G.H., 1994. Carbon turnover in soil physical fractions. Soil Science Society of America Journal 58: 1167-1173.

  • Cambardella, C.A. and Elliot, E.T., 1992. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Science Society of American Journal 56: 777-783.

  • Caride, C., Piñeiro, G. and Paruelo, J.M., 2012. How does agricultural management modify ecosystem services in the argentine Pampas? The effects on soil C dynamics. Agriculture, Ecosystems and Environment 154: 23-33.

  • Chen, J. and Stark, J.M., 2000. Plant species effects and carbon and nitrogen cycling in a sagebrush-crested wheatgrass soil. Soil Biology and Biochemistry 32: 47-57.

  • Christensen, B.T., 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science 52: 345-353.

  • Compton, J.E. and Boone, R.D., 2002. Soil nitrogen transformations and the role of light fraction organic matter in forest soils. Soil Biology and Biochemistry 34: 933-943.

  • Cookson, W.R., Osman, M., Marschner, P., Abaye, D.A., Clark, I., Murphy, D.V., Stockdale, E.A. and Watson, C.A., 2007. Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biology and Biochemistry 39: 744-756.

  • Corre, M.D., Dechert, G. and Veldkamp, E., 2006. Soil nitrogen cycling following Montane forest conversion in Central Sulawesi, Indonesia. Soil Science Society of American Journal 70: 359-366.

  • Darwich, N.A., 1991. Estado actual y manejo de los recursos naturales en la región pampeana húmeda sur. In: Seminario juicio a nuestra agricultura. Hacia el desarrollo de una agricultura sostenible. Hemisferio Sur, Buenos Aires, Argentina, pp.51-62.

  • Davidson, E.A., Hart, S.C. and Firestone, M.K., 1992. Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73: 1148-1156.

  • Davidson, E.A., Hart, S.C., Shanks, C.A. and Firestone, M.K., 1991. Measuring gross mineralization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores. Journal of Soil Science 42: 335-349.

  • Diovisalvi, N.V., Studdert, G.A., Domínguez, G.F. and Eiza, M.J., 2008. Fracciones de carbono y nitrógeno orgánicos y nitrógeno anaeróbico bajo agricultura continua. Ciencia del Suelo 26: 1-11.

  • Domínguez, G.F., Diovisalvi, N.V., Studdert, G.A. and Monterubbianesi, M.G., 2009. Soil organic C and N fractions under continuous cropping with contrasting tillage systems on mollisols of the southeastern pampas. Soil and Tillage Research 102: 93-100.

  • Domínguez, G., Studdert, G., Echeverría, H. and Andrade, F., 2001. Sistemas de cultivo y nutrición nitrogenada en maíz. Ciencia del Suelo 19: 47-56.

  • Durán, A., Morrás, H., Studdert, G. and Liu, L., 2011. Distribution, properties, land use and management of Mollisols in South America. Chinese Geographical Science, 21: 511-530.

  • Echeverría, H.E. and Videla, C.C., 1998. Eficiencia fisiológica y de utilización de nitrógeno en trigo en la Región Pampeana argentina. Ciencia del Suelo 16: 83-87.

  • Eiza, M.J., Fioriti, N., Studdert, G.A. and Echeverría, H.E., 2005. Fracciones de carbono orgánico en la capa arable: efecto de los sistemas de cultivo y de la fertilización nitrogenada. Ciencia del Suelo 23: 59-68.

  • Ernst, O. and Siri-Prieto, G., 2009. Impact of perennial pasture and tillage systems on carbon input and soil quality indicators. Soil and Tillage Research 105: 260-268.

  • Fabrizzi, K.P., García, F.O., Costa. J.L. and Picone, L.I., 2005. Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. Soil and Tillage Research 81: 57-69.

  • Fabrizzi, K.P., Morón, A. and García, F.O., 2003. Soil carbon and nitrogen organic fractions in degraded vs non-degraded mollisols in Argentina. Soil Science Society of American Journal 67: 1831-1841.

  • Feller, C. and Beare, M.H., 1997. Physical control of soil organic matter dynamics in the tropics. Geoderma 79: 69-116.

  • Franzluebbers, A.J., 2010. Achieving soil organic carbon sequestration with conservation agricultural systems in the Southeastern United States. Soil Science Society of America Journal 74: 347-357.

  • Hatch, D.J., Jarvis, S.C. and Phillips, L., 1990. Field measurement of nitrogen mineralization using soil core incubation and acetylene inhibition of nitrification. Plant and Soil 124: 97-107.

  • Instituto Nacional de Tecnología Agropecuaria (INTA), 1979. Carta de Suelos de la República Argentina. Hoja: 3757-31, Balcarce. Secretaría de Agricultura, Ganadería y Pesca, Buenos Aires, Argentina.

  • Jagadamma, S. and Lal, R., 2010. Distribution of organic carbon in physical fractions of soils as affected by agricultural management. Biology and Fertility of Soils 46: 543-554.

  • Kirkham, D. and Bartholomew, W.V., 1954. Equations for following nutrient transformations in soil, utilizing tracer data. Soil Science Society of American Proceedings 18: 33-34.

  • Lal, R., Follett, R.F. and Kimble, J.M., 2003. Achieving soil carbon sequestration in the United States: a challenge to policy makers. Soil Science 168: 827-845.

  • Leavitt, S.W., Follett, R.F. and Paul, E.A., 1996. Estimation of slow- and fast-cycling soil organic carbon pools from 6N HCl hydrolysis. Radiocarbon 38: 231-239.

  • Luxhøi, J., Nielsen, N.E. and Jensen, L.S., 2003. Influence of15 NH+ 4 -application on gross N turnover rates in soil. Soil Biology & Biochemistry 35: 603-606.

  • Mandiola, M., Studdert, G.A., Dominguez, G.F. and Videla, C., 2011. Organic matter fraction distribution in aggregate sizes of a mollisol under contrasting managements. Journal of Soil Science and Plant Nutrition 11: 47-57.

  • Monaghan, R. and Barraclough, D., 1995. Contributions to gross N mineralization from15 N-labelled soil macroorganic matter fractions during laboratory incubation. Soil Biology and Biochemistry 27: 1623-1628.

  • Monhagan, R., 1995. Errors in estimates of gross rates of nitrogen mineralization due to non-uniform distributions of15 N label. Soil Biology and Biochemistry 27: 855-859.

  • Navarro, C.A., Echeverría, H.E., González N.S. and Iglesias, M.A., 1980. Cinética de las reacciones de amonificación y nitrificación en los suelos del sudeste bonaerense. In: IX Reunión Argentina de la Ciencia del Suelo, Paraná, Entre Ríos, 1980. Actas. Tomo II, pp. 431-437.

  • Nelson, M.A., Griffith S.M. and Steiner, J.J., 2006. Tillage effects on nitrogen dynamics and grass seed crop production in western Oregon, USA. Soil Science Society American Journal 70: 825-831.

  • Parton, W.J., Schimel, D.S., Cole, C.V. and Ojima, D.S., 1987. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Science Society of America Journal. 51: 1173-1179.

  • Paul, E.A., Collins, H.P. and Leavitt, S.W., 2001. Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring14 C abundance. Geoderma 104: 239-256.

  • Paul, E.A., Horwath, W.R., Harris, D., Follett, R., Leavitt, S.W., Kimball, B.A. and Pregitzer, K., 1995. Establishing the pool sizes and fluxes in CO2 emissions from soil organic matter turnover. In: Lal, R., Kimble, J., Levine, E. and Stewart, B.A. (eds.) Soils and global change. CRC Press, Boca Raton, FL, USA, pp. 297-304.

  • Puget, P. and Lal, R., 2005. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil and Tillage Research 80: 201-213.

  • Recous, S., Aita, C. and Mary, B., 1999. In situ changes in gross N transformations in bare soil after addition of straw. Soil Biology and Biochemistry 31: 119-133.

  • Sainz-Rozas, H.R., Echeverría, H.E. and Angelini, H., 2011. Niveles de materia orgánica y pH en suelos agrícolas de la Región Pampeana y extrapampeana Argentina. Ciencia del Suelo 29: 29-37.

  • SAS Institute, 1985. User's Guide. Statistics, V. 5. SAS Inst., Cary, NC, USA.

  • Six, J., Bossuyt, H., Degryze, S. and Denef, K., 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research 79: 7-31.

  • Six, J., Feller C., Denef, K., Ogle, S.M., De Moraes Sa, J.C. and Albrecht, A., 2002. Soil organic matter, biota and aggregation in temperate and tropical soils – effects of no-tillage. Agronomie 22: 755-775.

  • Six, J., Paustian, K., Elliot. E.T. and Combrink, C., 2000. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Science Society of American Journal 64: 681-689.

  • Sørensen, P. and Jensen, E.S., 1991. Sequential diffusion of ammonium and nitrate from soil extracts to a polytetraethylene trap for 15N determination. Analytica Chimica Acta 252: 201-203.

  • Steinbach, H. and Álvarez, R., 2006. Changes in soil organic carbon contents and nitrous oxide emissions after introduction of no-till in Pampean agroecosystems. Journal of Environmental Quality 35: 3-13.

  • Stenger, R., Priesack, E. and Beese, F., 1995. Rates of net nitrogen mineralization in disturbed and undisturbed soils. Plant and Soil 171: 323-332.

  • Studdert, G.A. and Echeverría, H.E., 2000. Crop rotations and nitrogen fertilization to manage soil organic carbon dynamics. Soil Science Society of American Journal 64: 1496-1503.

  • Studdert, G.A., Domínguez, G.F., Agostini, M.A. and Monterubbianesi M.G., 2010. Cropping systems to manage Southeastern Pampas’ Mollisol health. I. Organic C and mineralizable N. In: Liu, X., Song, C., Cruse, R.M. and Huffman, T. (eds.) Proceedings of the international symposium on soil quality and management of world mollisols – new advances in research and management of world mollisols. July 13-16, 2010. Harbin, Heilongjiang, China P.R., pp. 199-200.

  • Studdert, G.A., Echeverría, H.E. and Casanovas, E.M., 1997. Crop-pasture rotation for sustaining the quality and productivity on a typic argiudoll. Soil Science Society of American Journal 61: 1466-1472.

  • Takahashi, S., 2001. Comparison of gross nitrogen mineralization rates by zero-order models. Soil Science Society of American Journal 65: 244-246.

  • Tisdall, J.M. and Oades, J.M., 1982. Organic matter and water stable aggregates in soils. Journal of Soil Science 33: 141-163.

  • Videla, C.C., 1994. La volatilización de amoníaco: una vía de pérdida de nitrógeno en sistemas agropecuarios. Boletín Técnico INTA 131: 16 pp.

  • Watson, C.J. and Mills, C.L., 1998. Gross nitrogen transformations in grassland soils as affected by previous management intensity. Soil Biology and Biochemistry 30: 743-753.

  • Zaman, M. and Chang, S.X., 2004. Substrate type, temperature, and moisture content affect gross and net mineralization and nitrification rates in agroforestry systems. Biology and Fertility of Soils 39: 269-279.

Metrics

All Time Past 365 days Past 30 Days
Abstract Views 81 64 13
Full Text Views 1 0 0
PDF Views & Downloads 2 0 0