Fast bacterial strain identification by laser induced breakdown spectroscopy and neural networks

In: Industrial, medical and environmental applications of microorganisms
Authors:
S. Manzoor 1Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain; jcaceres@ucm.es

Search for other papers by S. Manzoor in
Current site
Google Scholar
PubMed
Close
,
S. Moncayo 1Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain; jcaceres@ucm.es

Search for other papers by S. Moncayo in
Current site
Google Scholar
PubMed
Close
,
F. Navarro-Villoslada 1Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain; jcaceres@ucm.es

Search for other papers by F. Navarro-Villoslada in
Current site
Google Scholar
PubMed
Close
,
J.A. Ayala 2Centro de Biología Molecular ‘Severo Ochoa’, CSIC, C/Nicolás Cabrera 1, Cantoblanco 28049 Madrid, Spain

Search for other papers by J.A. Ayala in
Current site
Google Scholar
PubMed
Close
,
R. Izquierdo-Hornillos 1Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain; jcaceres@ucm.es

Search for other papers by R. Izquierdo-Hornillos in
Current site
Google Scholar
PubMed
Close
,
F.J. Manuel de Villena 1Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain; jcaceres@ucm.es

Search for other papers by F.J. Manuel de Villena in
Current site
Google Scholar
PubMed
Close
, and
J.O. Caceres 1Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain; jcaceres@ucm.es

Search for other papers by J.O. Caceres in
Current site
Google Scholar
PubMed
Close

Purchase instant access (PDF download and unlimited online access):

$40.00

A method for rapid bacterial strain identification based on Laser Induced Breakdown Spectroscopy (LIBS) and Neural Networks (NN) is reported. The study includes bacterial strains of the most relevant bacteria causing Hospital Acquired Infections (HAI), i.e. Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium and Staphylococcus aureus. LIBS/NN methodology was evaluated for its capacity to discriminate different bacterial strains using their characteristic LIBS spectra from changes in their elemental composition as a result of genetic variations. The samples were measured for two different days to evaluate the time-dependent classification capacity of the methodology. A successful classification of bacterial strains by the proposed LIBS/NN method, with accuracy above 95%, shows its potential to address the safety and social-cost HAI-related issue.

  • Collapse
  • Expand

Metrics

All Time Past Year Past 30 Days
Abstract Views 4 4 0
Full Text Views 0 0 0
PDF Views & Downloads 0 0 0