Peptides and proteins regulating food intake: a comparative view

in Animal Biology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?



Energy homeostasis is under multiple endocrine and neural controls that involve both central and peripheral hormones and neuropeptides. Disorders of energy balance (e.g., obesitas and anorexia nervosa) are caused by subtle dysregulation of these regulatory mechanisms. The hypothalamic arcuate nucleus is a main site of central regulation where two distinct subpopulations of neurons co-express either neuropeptide Y (NPY) and agouti-related protein (AgRP), or proopiomelanocortin (POMC) and cocaine and amphetamine-regulated transcript (CART): the former set of peptides increases food intake; the latter decreases food intake and affect energy metabolism. Key peripheral hormones affecting energy metabolism include cholecystokinin (CCK), leptin and insulin, which decrease food intake, and ghrelin, which increases food intake. CCK and ghrelin regulate food intake in the short term (by affecting meal size), whereas leptin and insulin regulate food intake over longer periods spanning several meals. These signals and their physiology are reasonably well understood in mammals. On the other hand, knowledge on energy metabolism in earlier vertebrates is scant. Recently characterised central food intake regulatory mechanisms in fish suggest that they operate in a manner similar to their mammalian counterparts. Peripheral mechanisms have been poorly studied outside mammals. The recent identification of leptin in several fish species provides new insights and opportunities to enhance our understanding of the regulation of food intake. Comparative analysis of these peripheral mechanisms may shed new light on the function and evolution of the mechanisms controlling energy homeostasis. In this review, we summarise recent developments in understanding of mechanisms and signals that regulate energy balance in mammals, and compare these to what we now know about their orthologues in earlier vertebrates, with a particular focus on bony fishes.

Peptides and proteins regulating food intake: a comparative view

in Animal Biology



Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 32 32 10
Full Text Views 64 64 45
PDF Downloads 15 15 4
EPUB Downloads 0 0 0