Impact of Bt cotton on the immune system and histology of the midgut of the fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae)

in Animal Biology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Despite the efficiency of transgenic plants expressing Bacillus thuringiensis (Bt) toxins as insecticides against several lepidopterans, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is one species that presents low susceptibility to most Bt crops. This study investigated the effects of the Cry1Ac toxin expressed by Bt cotton in the midgut of S. frugiperda and its effects on the humoral and cellular immune responses. Three hypotheses were proposed and tested with contributing factors for the natural tolerance of S. frugiperda: (i) midgut regenerative cells are activated by the Cry1Ac toxin, and thus renew the epithelial cells damaged by the protein, (ii) Cry1Ac increased production of nitric oxide or phenoloxidase in the hemolymph, and (iii) there are qualitative and quantitative variations in the hemocyte levels of S. frugiperda. Caterpillars were reared using Bt cotton (Acala 90B) and non-Bt isolines (Acala 90), from the first to the fourth instar. The Bt cotton promoted elongation of the epithelial cells in the midgut of S. frugiperda caterpillars. Hence, evidence only supported the hypothesised increase of phenoloxidase (ii) and qualitative and quantitative differences in hemocyte levels (iii) in insects that were fed with Bt and non-Bt cotton. These parameters seem to explain the low susceptibility of S. frugiperda to Cry1Ac toxin and they are a viable set of responses for the evaluation of other xenobiotic factors.



AdamoA.S. (2005) Parasitic suppression of feeding in the tobacco hornworm, Manduca sexta: parallels with feeding depression after an immune challenge. Arch. Insect Biochem. Physiol., 60, 185-197.

ArandaE.SanchezJ.PeferoenM.GüerecaL.BravoA. (1996) Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Invertebr. Pathol., 68, 203-212.

BarrosE.M.TorresJ.B.BuenoA.F. (2010a) Oviposição, desenvolvimento e reprodução de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) em diferentes hospedeiros de importância econômica. Neotrop. Entomol., 39, 996-1001.

BarrosE.M.TorresJ.B.RubersonJ.R.OliveiraM.D. (2010b) Development of Spodoptera frugiperda on different hosts and damage to reproductive structures in cotton. Entom. Exp., Appl., 37, 237-245.

BradfordM.M. (1976) A rapid and sensitive methods for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254.

BobrowskiV.L.PasqualiG.Bodanese-ZanettiniM.H.FiuzaL.M. (2002) Characterization of two Bacillus thuringiensis isolates from south Brazil and their toxicity against Anticarsia gemmatalis (Lepidoptera: Noctuidae). Biol. Control., 25, 129-135.

CapineraJ.L. (2002) Handbook of Vegetable Pests. 2nd ed. San Diego, USA.

CastagnolaA.EdaS.Jurat FuentesJ.L. (2011) Monitoring stem cell proliferation and differentiation in primary midgut cell cultures from Heliothis virescens larvae using flow cytometry. Differentiation, 3, 192-198.

CavadosC.F.G.MajerowiczS.ChavesJ.Q.Araújo-CoutinhoC.J.P.C.RabinovitchL. (2004) Histopathological and ultrastructural effects of d-endotoxins of Bacillus thuringiensis Serovar israelensis in the midgut of Simulium pertinax larvae (Diptera, Simuliidae). Mem. Inst. Oswaldo Cruz., 99, 493-498.

ChaputC.BonecaI.G. (2007) Peptidoglycan detection by mammals and flies. Microb. Infec., 9, 637-647.

CorreiaA.A.Wanderley-TeixeiraV.OliveiraJ.V.TorresJ.B. (2008) Dinámica hemocitaria en larvas de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) tratadas con nim (Azadirachta indica A. Juss). Bol. Sanidad. Veg. Plagas., 34, 357-365.

CunhaF.M.Wanderley-TeixeiraV.TeixeiraA.A.C.AlbuquerqueA.C.AlvesL.C.LimaE.A.L. (2009) Caracterização dos hemócitos de operários de Nasutitermes coxipoensis (Holmgren) (Isoptera: Termitidae) e avaliação hemocitária após parasitismo por Metarhizium anisopliae. Neotrop. Entomol., 38, 293-297.

EleftherianosI.BaldwinH.French-ConstantR.H.ReynoldsS.E. (2008) Developmental modulation of immunity: changes within the feeding period of the fifth larval stage in the defence reactions of Manduca sexta to infection by Photorhabdus. J. Insect Physiol., 54, 309-318.

EricssonJ.D.JanmaatA.F.LowenbergerC.MyersJ.H. (2009) Is decreased generalized immunity a cost of Bt resistance in cabbage loopers Trichoplusia ni? J. Invertebr. Pathol., 100, 61-67.

FalleirosA.M.F.BombonatoM.T.S.GregórioE.A. (2003) Ultrastructural and quantitative studies of hemocytes in the sugarcane borer, Diatreae saccharalis (Lepidoptera: Pyralidae). Braz. Arch. Biol. Technol., 46, 287-294.

FaraldoA.C.SanunesA.FaccioliL.H.Del BelE.A.LelloE. (2005) Nitric oxide production in blowfly hemolymph after yeast inoculation. Nitric Oxide, 13, 240-246.

FaraldoA.C.NóbileP.M.DaffreS.GregórioE.A.LelloE. (2006) Prophenoloxidase activation in blowfly hemolymph after yeast inoculation. Anais do XIII Congresso da Sociedade Brasileira de Biologia Celular, p. 136.

FerréJ.Van RieJ. (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol., 47, 501-533.

FoleyE.O’FarrelP.H. (2003) Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Genes & Dev., 17, 115-125.

GassmannA.J.FabrickJ.A.SistersonM.S.HannonE.R.StockS.P.CarrièreY.TabashnikB.E. (2009) Effects of pink bollworm resistance to Bacillus thuringiensis on phenoloxidase activity and susceptibility to entomopathogenic nematodes. J. Econ. Entomol., 102, 1224-1232.

GouldF. (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol., 43, 701-726.

GreenL.C.De LuzuriagaK.R.WagnerD.A.RandW.IstfanN.YoungV.R.TannenbaumS.R. (1981) Nitrate biosynthesis in man. Proc. Natl. Acad. Sci. U.S.A., 78, 7764-7768.

GreeneG.L.LepplaN.C.DickersonW.A. (1976) Velvetbean caterpillar: a rearing procedure and artificial medium. J. Econ. Entomol., 69, 487-488.

HakimR.S.BaldwinK.SmaggheG. (2010) Regulation of midgut growth, development, and metamorphosis. Annu. Rev. Entomol., 55, 593-608.

HaraH.AtsumiS.YaoiK.NakanishiK.HigurashiS.MiuraN.TabunokiH.SatoR. (2003) A cadherin-like protein functions as a receptor for Bacillus thuringiensis Cry1Aa and Cry1Ac toxins on midgut ephitelial cells of Bombyx mori larvae. FEBS Lett., 538, 29-34.

HerreroS.González-CabreraJ.TabashnikB.FerréJ. (2001) Shared binding sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A toxins. Appl. Environ. Microbiol., 67, 5729-5734.

KnaakN.FiuzaL.M. (2005) Histopathology of Anticarsia gemmatalis Hübner (Lepidoptera; Noctuidae) treated with Nucleopolyhedrovirus and Bacillus thuringiensis Serovar Kurstaki. Braz. J. Microbiol., 36, 196-200.

LavineM.D.StrandM.R. (2002) Insect haemocytes and their role in immunity. Insect Biochem. Mol. Biol., 32, 1295-1309.

LevyS.M.FalleirosA.M.F.GregórioE.A.ArrebolaN.R.ToledoL.A. (2004) The larval midgut of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae): light and electron microscopy studies of the epithelial cells. Braz. J. Biol., 64, 633-638.

LuttrellR.G.WanL.KnightenK. (1999) Variation in susceptibility of noctuid (Lepidoptera) larvae attacking cotton and soybean to purified endotoxin proteins and commercial formulations of Bacillus thuringiensis. J. Econom. Entomol., 92, 21-32.

MaG.RobertsH.SarjanM.FeatherstoneN.LahnsteinJ.AkhurstR.SchmidtO. (2005) Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Insect Biochem. Mol. Biol., 35, 729-739.

Martínez-RamírezA.GouldF.FerréJ. (1999) Histopathological effects and growth reduction in a susceptible and a resistant strain of Heliothis virescens (Lepidoptera: Noctuidae) caused by sublethal doses of pure Cry1A crystal proteins from Bacillus thuringiensi. Biocontrol Sci. Tech., 9, 239-246.

MonneratR.MartinsE.QueirozP.OrdúzS.JaramilloG.BenintendeG.CozziJ.RealM.D.MartinezA.M.RausellC.CerónJ.IbarraJ.E.Rincon-CastroM.C.EspinozaA.M.Meza-BassoL.CabreraL.SánchezJ.SoberonM.BravoA. (2006) Genetic variability of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) populations from Latin America is associated with variations in susceptibility to Bacillus thuringiensis Cry toxins. Appl. Environ. Microbiol., 72, 7029-7035.

NappiA.J.OttavianiE. (2000) Cytoxicity and cytotoxic molecules in invertebrates. Bioessays, 22, 469-480.

OestergaardJ.EhlersR.U.Martínez-RamírezA.C.RealM.D. (2007) Binding of Cyt1Aa and Cry11Aa toxins of Bacillus thuringiensis Serovar israelensis to brush border membrane vesicles of Tipula paludosa (Diptera: Nematocera) and sub-sequent pore formation. Appl. Environ. Microbiol., 73, 3623-3629.

PandeyS.JoshiB.D.TiwariL.D. (2009) Histopathological changes in the midgut of Spodoptera litura larvae on ingestion of Bacillus thuringiensis delta endotoxin. Arch. Phytopathol. Pl. Prot., 42, 376-383.

PerlakF.J.OppenhuizenM.GustafsonK.VothR.SivasupramaniamS.HeeringD.CareyB.IhrigR.A.RobertsJ.K. (2001) Development and commercial use of Bolgard® cotton in the USA – early promises versus today’s reality. Plant J., 27, 489-501.

PinheiroD.O.Quagio-GrassiottoI.GregórioE.A. (2008) Morphological regional differences of epithelial cells along the midgut in Diatraea saccharalis Fabricius (Lepidoptera: Crambidae) larvae. Neotrop. Entomol., 37, 413-419.

RahmanM.M.RobertsH.L.S.SarjanM.AsgariS.SchmidtO. (2004) Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. U.S.A., 101, 2696-2699.

RahmanM.M.MaG.RobertsH.L.S.SchmidtO. (2006) Cell-free immune reactions in insects. J. Insect Physiol., 52, 754-762.

RausellC.DeckerN.García-RoblesI.EscricheB.KerkhoveVan E.RealM.D.Martínez-RamírezA.C. (2000) Effects of Bacillus thuringiensis toxins of the midugut of the nun moth Lymantria monacha. J. Invertebr. Pathol., 75, 288-291.

Rost-RoszkowskaM.M.ChechelskaA.FradczakM.SalitraK. (2008) Ultrastructure of two types of endocrine cells in the midgut epithelium of Spodoptera exigua Hübner, 1808 (Insecta, Lepidoptera, Noctuidae). Zool. Polonoiae., 53, 27-35.

RoyetJ.DziarskiR. (2007) Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nature Rev. Microbiol., 5, 264-277.

RuizM.L.SeguraC.TrujilloJ.OrduzS. (2004) In vivo binding of the Cry11Bb toxin of Bacillus thuringiensis subsp. medellin to the midgut of mosquito larvae (Diptera: Culicidae). Mem. Inst. Oswaldo Cruz., 99, 73-79.

SAS Institute (2001) SAS/STAT User’s Guide, version 8.02, TS level 2MO. SAS Institute Inc., Cary, NC.

SantosR.L.TorresJ.B. (2010) Produção da proteína Cry1Ac em algodão transgênico e controle de lagartas. Rev. Bras. Ciências. Agr., 5, 509-517.

SousaM.E.C.Wanderley-TeixeiraV.TeixeiraA.A.C.SiqueiraH.A.A.SantosF.A.B.AlvesL.C. (2009) Ultrastructure of the Alabama argillacea (Hübner) (Lepidoptera: Noctuidae) midgut. Micron., 40, 743-749.

SousaM.E.C.SantosF.A.B.Wanderley-TeixeiraV.TeixeiraA.A.C.SiqueiraH.A.A.AlvesL.C.TorresJ.B. (2010) Histopathology and ultrastructure of midgut of Alabama argillacea (Hübner) (Lepidoptera: Noctuidae) fed Bt-cotton. J. Insect Physiol., 56, 1913-1919.

TabashnikB.E.GassmannA.J.CrowderD.W.CarrièreY. (2008) Insect resistance to Bt crops: evidence versus theory. Nature Biotechnol., 26, 199-202.

TorresJ.B.RubersonJ.R. (2008) Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans. Transgenic Res., 17, 345-354.

WangP.ZhaoJ.Z.Rodrigo-SimónA.KainW.JanmaatA.F.SheltonA.M.FerréJ.MyersJ. (2007) Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of cabbage looper, Trichoplusia ni. Appl. Environ. Microbiol., 73, 1199-1207.

ZhangX.CandasM.GrikoN.B.Rose-YoungL.BullaL.A.Jr. (2005). Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ., 12, 1407-1416.


  • Cross-sectional view of the midgut of fourth instar S. frugiperda stained with Toluidine blue. (A, B) caterpillars fed with non-Bt cotton; (C, D) caterpillars fed with Bt cotton. Abbreviations and symbols: Cc, columnar cells; Cm, circular muscle; Gc, goblet cells; L, Lumen; Lm, longitudinal muscle; M, microvilli; n, nucleus; arrow head, peritrophic matrix; arros, regenerative cells. This figure is published in colour in the online version.

    View in gallery
  • Total count (average ± S.E.) of hemocytes in fourth instar S. frugiperda caterpillars fed with non-Bt and Bt cotton. Different letters indicate significant differences by Tukey’s HSD test (α=0.05, n = 10 larvae/treatment).

    View in gallery
  • Phenoloxidase activity [optical density (OD) at 492 nm] in the hemolymph of S. frugiperda caterpillars fed with non-Bt and Bt cotton as a function of time (sample size: N=10 larvae).

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 10 10 6
Full Text Views 0 0 0
PDF Downloads 0 0 0
EPUB Downloads 0 0 0