Body shape evolution of Chromis and Azurina species (Percifomes, Pomacentridae) of the eastern Pacific

in Animal Biology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Chromis is a circumglobal tropical and temperate genus with over 84 species of damselfishes. Studies based in osteological and molecular data have cited the relationship between Azurina and Chromis in the eastern Pacific. The main objectives of the study are: (1) to characterize size and shape in all Chromis and Azurina species of the eastern Pacific, (2) explore the phylogenetic signal of external morphology, and (3) present a hypothesis of the diversification process of this group. According to the results, there is no significant relationship between size and shape. The variation in body shape among all species is related to the height of the trunk, position of the snout and eye, and length of the caudal peduncle. The main morphologic variation between Azurina and Chromis is the degree of elongation of the body. Both Azurina species are closely related to C. punctipinnis and C. atrilobata. The morphological pattern of Azurina integrated it into Chromis. The phylogenetic pattern found by geometric morphometric analyses presented a high similarity with previous results based on molecular data. Phylogeny recovered two main clades, slender-bodied and deep-bodied species. This pattern of morphometric variation is closely related to exploitation of two different reef environments.

Body shape evolution of Chromis and Azurina species (Percifomes, Pomacentridae) of the eastern Pacific

in Animal Biology



AbdalaC.S. (2007) Phylogeny of the boulengeri group (Iguania: Liolaemidae, Liolaemus) based on morphological and molecular characters. Zootaxa15383-84.

Aguilar-MedranoR.FrédérichB.De LunaE.BalartE.F. (2011) Patterns of morphological evolution of the cephalic region in damselfishes (Perciformes, Pomacentridae) of the eastern Pacific. Biol. J. Linn. Soc.102593-613.

AllenG.R. (1991) Damselfishes of the World. Mergus PressMelle, Germany.

BooksteinF.L. (2002) Creases as morphometric characters. In: MacleodN.ForeyP.L. (Eds.) Morphology Shape and Phylogeny pp.  139-174. Taylor & Francis PressLondon.

BooksteinF.L. (1991) Morphometric Tools for Landmark Data – Geometry and Biology. Cambridge University PressNew York, USA.

CardiniA.EltonS. (2008) Does the skull carry a phylogenetic signal? Evolution and modularity and in the guenons. Biol. J. Linn. Soc.93813-834.

CatalanoS.A.GoloboffP.GianniniP. (2010) Phylogenetic morphometrics (I): the use of landmark data in a phylogenetic framework. Cladistics26539-549.

CaumulR.PollyP.D. (2005) Phylogenetic and environmental components of morphological variation: skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution592460-2472.

ChoatJ.H. (2006) Phylogeography and reef fishes: bringing ecology back into the argument. J. Biogeogr.33967-968. BivortB.L.GiribertG. (2009) A phylogenetic analysis for the South-east Asian mite harvestman family Stylocellidae (Opiliones: Cyphophthalmi) – a combined analysis using morphometric and molecular data. Invert. Syst.23515-529.

CooperW.J.SmithL.L.WestneatM.W. (2009) Exploring the radiation of a diverse reef fish family: phylogenetics of the damselfishes (Pomacentridae), with new classifications based on molecular analyses of all genera. Mol. Phyl. Evol.521-16.

CooperW.J. (2006) The Evolution of the Damselfishes: Phylogenetics Biomechanics and Development of a Diverse Coral Reef Fish Family. Organismal Biology and Anatomy. The University of ChicagoChicago.

DavisJ.C. (1986) Statistics and Data Analysis in Geology. John Wiley & Sons PressNew York, USA.

DesseinS.OchoterenaH.De BlockP.LensF.RobbrechtE.ScholsP.SmetsE.VinckierS.HuysmansS. (2005) Palynological characters and their phylogenetic signal in Rubiaceae. Bot. Rev.71354-414.

de BivortB.L.ClouseR.M.GiribetG. (2010) A morphometrics-based phylogeny of the temperate Gondwanan mite harvestmen (Opiliones, Cyphophthalmi, Pettalidae). J. Zool. Syst. Evol. Res.48249-309.

DomínguezM.C.Roig-JuñentS.A. (2008) A phylogeny of the family Fanniidae Schnabl (Insecta: Diptera: Calyptratae) based on adult morphological characters, with special reference to the Austral species of the genus Fannia. Invertebr. Syst.22563-587.

DouglasM.E.DouglasM.R.LynchJ.M.McelroyD.M. (2001) Use of geometric morphometrics to differentiate Gila (Cyprinidae) within the upper Colorado River Basin. Copeia2001389-400.

EmeryA.R. (1973) Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bull. Mar. Sci.23649-770.

FarrisJ.A.AlbertV.A.KällersjöM.LipscombD.KlugeA.G. (1996) Parsimony jackknifing outperforms neighbor-joining. Cladistics1299-124.

FelsensteinJ. (1988) Phylogenies and quantitative characters. Annu. Rev. Ecol. Syst.19445-471.

FelsensteinJ. (2002) Quantitative characters, phylogenies, and morphometrics. In: MacLeodN.ForeyP.L. (Eds.) Morphology Shape and Phylogenetics pp.  27-44. Taylor & FrancisLondon.

FrédérichB.PiletA.ParmentierE.VandewalleP. (2008) Comparative trophic morphology in eight species of damselfishes (Pomacentridae). J. Morph.269175-188.

FinkW.L.ZelditchM.L. (1995) Phylogenetic analysis of ontogenetic shape transformations: a reassessment of the piranha genus Pygocentrus (Teleostei). Syst. Biol.44343-360. BivortB.L.DimitrovD.KawauchiJ.Y.MurienneJ.SchwendingerP.J. (2012) Evolutionary and biogeographical history of an ancient and global group of arachnids (Arachnida: Opiliones: Cyphophthalmi) with a new taxonomic arrangement. Biol. J. Linn. Soc.10592-130.

GoloboffP.A.FarrisJ.NixonK. (2008) TNT, a free program for phylogenetic analysis. Cladistics24774-786.

González-JoséR.EscapaI.NevesW.A.CúneoR.PucciarelliH.M. (2008) Cladistic analysis of continuous modularized traits provides phylogenetic signals in Homo evolution. Nature68911-5.

GreenfieldD.W.WoodsL.P. (1980) Review of the deep-bodied species of Chromis (Pisces: Pomacentridae) from the eastern Pacific, with descriptions of three new species. Copeia1980626-641.

GuerreroJ.A.De LunaE.Sanchez-HernándezC. (2003) Morphometrics in the quantification of character state identity for the assessment of primary homology: an analysis of character variation of the genus Artibeus (Chiroptera: Phyllostomidae). Biol. J. Linn. Soc.8045-55.

HammerØ.HarperD.A.T.RyanP.D. (2001) PAST: Palentological Statistics software package for education and data analysis. Pal. Elec.41-9. URL:

HumphriesC.J. (2002) Homology, characters and continuous variables. In: MacLeodN.ForeyP.L. (Eds.) Morphology Shape and Phylogeny pp.  8-26. Taylor & FrancisLondon.

IvanovicA.SotiropoulosK.DqukicG.KalezicM.L. (2009) Skull size and shape variation versus molecular phylogeny: a case study of alpine newts (Mesotriton alpestris, Salamandridae) from the Balkan Peninsula. Zoomorphology122157-167.

KlingenbergC.P.BarluengaM.MeyerA. (2003) Body shape variation in cichlid fishes of the Amphilophus citrinellus species complex. Biol. J. Linn. Soc.80397-408.

MoonH.K.VinckierS.WalkerJ.B.SmetsE.HuysmansS. (2008) A search for phylogenetically informative pollen characters in the subtribe Salviinae (Mentheae: Lamiaceae). Int. J. Plant Sci.169455-471.

PanchettiF.ScaliciM.CarpanetoG.M.GibertiniG. (2008) Shape and size variations in the cranium of elephant-shrews: a morphometric contribution to a phylogenetic debate. Zoomorphology12769-82.

PelserP.B.Van Den HofK.GravendeelB.Van Der MeijdenR. (2004) The systematic value of morphological characters in Senecio sect. Jacobaea (Asteraceae) as compared to DNA sequences. Syst. Bot.29790-805.

QuenouilleB.BerminghamE.PlanesS. (2004) Molecular systematics of the damselfishes (Teleostei: Pomacentridae): Bayesian phylogenetic analyses of mitochondrial and nuclear DNA sequences. Mol. Phyl. Evol.3162-68.

RobertsonD.R.AllenG.R. (2008) Shorefishes of the Tropical eastern Pacific online information system Version 1.0. Smithsonian Tropical Research Institute Balboa Panamá. URL:

RohlfF.J. (1993) Relative warps analysis and an example of its application to mosquito wings. In: MarcusL.F.BelloE.Garcia-ValdecasasA. (Eds.) Contributions to Morphometrics pp.  131-159. Monografias del Museo Nacional de Ciencias Naturales, CSICMadrid, España.

RohlfF.J. (2010) TPS series. Department of Ecology and Evolution State University of New York Stony Brook. URL:

RohlfF.J.BooksteinF.L. (1990) Proceedings of the Michigan Morphometrics Workshop. Special Publication No. 2. The University of Michigan Museum of Zoology Ann Arbor Michigan USA.

RohlfF.J.SliceD. (1990) Extension of the Procrustes method for the optimal superposition of landmarks. J. Syst. Zool.3940-59.

SaleP.F. (1980) The ecology of fishes on coral reefs. Oceanogr. Mar. Biol.18367-421.

SaleP.F. (2006) Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem. Academic Press, Inc.San Diego, USA.

Soto-VivasA.LiriaJ.De LunaE. (2011) Morfometría geométrica y filogenia en Rhodniini (Hemiptera, Reduviidae) de Venezuela. Acta Zool. Mex.2787-102.

TangK.L.McNysetK.M.HolcroftN.I. (2004) The phylogenetic position of five genera (Acanthochromis, Azurina, Chrysiptera, Dischistodus, and Neopomacentrus) of damselfishes (Perciformes: Pomacentridae). Mol. Phyl. Evol.30823-828.

ThompsonD.A. (1917) On Growth and Form. Cambridge University PressCambridge, USA.

ValentinA.SevigniJ.M.ChanutJ.P. (2002) Geometric morphometrics reveals body shape differences between sympatric redfish Sebastes mentella, Sebastes fasciatus and their hybrids in the Gulf of St Lawrence. J. Fish. Biol.60857-875.


  • View in gallery

    Distribution of Chromis and Azurina along the coasts and islands of the eastern Pacific. This figure is published in colour in the online version.

  • View in gallery

    Landmarks used for geometric morphometric analyses: (1) snout; (2) eye; (3) supraoccipital crest; (4) origin of the dorsal fin; (5) posterior extreme of the dorsal fin; (6, 7 and 8) superior caudal peduncle (origin, waist and posterior extreme); (9, 10, 11) inferior caudal peduncle (origin, waist and anterior extremes); (12) anal fin origin; (13) pelvic fin origin; (14) pectoral fin down origin; (15) pectoral fin above origin; (16) operculum angle; and (17) upper margin of the operculum.

  • View in gallery

    Principal component analysis (PCA). Symbols: cross: C. alta; square: C. atrilobata; fill square: C. crusma; equis: C. intercrusma; circle: C. limbaughi; diamond: C. meridiana; asterisk: C. punctipinnis; triangle: A. eupalama; fill triangle: A. hirundo. Black left square: Chromis species. Greenfield & Woods (1980) classification: (A) deep-bodied species and (B) slender-bodied species. Red oval in the right side of the graph (C): Azurina species. Grids represent the morphologic extreme of PC1. This figure is published in colour in the online version.

  • View in gallery

    Canonical variables analysis (CVA): CV1 versus CV2. Symbols: square: C. alta and C. limbaughi; fill square: C. atrilobata; circle: C. crusma; fill circle: C. intercrusma; triangle: C. meridiana; fill triangle: C. punctipinnis; asterisk: A. eupalama; cross: A. hirundo. Grids represent the morphologic extreme of each axis.

  • View in gallery

    UPGMA phenogram of morphological data, using Mahalanobis distance. Index of copheneric correlation: 0.621. Right: Species images are added to help to visualize the morphological pattern. This figure is published in colour in the online version.

  • View in gallery

    Morphometric phylogeny of Chromis-Azurina species of the eastern Pacific. Onle the most important grids were included in the morphometric tree. Grids of the internal nodes were calculated by parsimony in TNT (see text).

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 11 11 7
Full Text Views 6 6 6
PDF Downloads 2 2 2
EPUB Downloads 0 0 0