Functional morphology of the gut of the tropical house gecko Hemidactylus mabouia (Squamata: Gekkonidae)

in Animal Biology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


The purpose of this study was to characterize morphophysiological aspects of the gut of the gecko Hemidactylus mabouia, a predator species of tiny arthropods. Fourteen adult specimen of the gecko H. mabouia were euthanized and fragments of their small and large intestines were collected and processed according to routine methods for anatomical, topological, histological and histochemical analyses. Histological sections were stained with toluidine blue or submitted to techniques for identification of argyrophil and argentaffin endocrine cells, glycoconjugates and alkaline phosphatase activity. The small intestine of H. mabouia is much more extensive and convolute than the large intestine. There are subtle regional differences along the small intestine, as the tubule diameter and height of the inner folds noticeably decrease from the proximal toward the distal segment. There is no caecum between the small and large intestines and the abrupt change in the caliber marks the transition of the small intestine into the large intestine. The large intestine consists of a very dilated proximal segment followed by a short distal segment. The villi are absent, but the tall folds in the internal covering of the small intestine constitute important amplifier structures of the digestive and absorptive area. No mucosal or submucosal glands were observed along the intestine. The epithelial lining of the entire intestine is simple columnar with enterocytes, mucus-secreting cells and endocrine cells. The enterocytes are abundant in the small intestine and the mucus-secreting cells are abundant in the large intestine, which reflects the functional role of these organs. In sum, H. mabouia has small intestine that is longer than the large intestine, which is consistent with the species being a carnivorous reptile.



AhmedY.A.El-HafezA.A.E.ZayedA.E. (2009) Histological and histochemical studies on the (2009) Histological and histochemical studies on the esophagus, stomach and small intestines of Varanus niloticus. J. Vet. Anat., 2, 35-48.

Al-ThaniA.S.El-SherifG. (1996) Histological and histochemical study of the digestive tract of the worm-like reptile, Diplometopon zarudnyi (Squamata). Quatar Univ. Sci. J., 16, 113-117.

AllenA.FlemströmG. (2005) Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am. J. Physiol. Cell Physiol., 288, 1-19.

AndrewW.HickmanC.P. (1974) Histology of the Vertebrates. A Comparative Text. The C.V. Mosby Company, Saint Louis.

AraújoT.H.FariaF.P.KatchburianE.HaapalainenE.F. (2010) Ultrastructuralchanges in skeletal muscle of the tail of the lizard Hemidactylus mabouia immediately following autotomy. Acta Zool., 91, 440-446.

BanksW.J. (1992) Histologia Veterinária Aplicada. Manole, São Paulo.

BarbozaP.S. (1995) Digesta passage and functional anatomy of the digestive tract in the desert tortoise (Xerobates agassizii). Comp. Physiol. B, 165, 193-220.

BarrettK.E. (2006) Gastrointestinal Physiology. McGraw-Hill, New York.

BurrellM.A.VillaroA.C.RindiG.SolciaE.PolakJ.M.SesmaP. (1991) A histological and immunocytochemical study of the neuroendocrine cells in the intestine of Podarcis hispanica Steindachner, 1870 (Lacertidae). Cell Tiss. Res., 263, 549-556.

CanyonD.V.HiiJ.L.K. (1997) The gecko: an environmentally friendly biological agent for mosquito control. Med. Vet. Entomol., 11, 319-323.

ChristelC.M.DeNardoD.F.SecorS.M. (2007) Metabolic and digestive response to food ingestion in a binge-feeding lizard, the Gila monster (Heloderma suspectum). J. Exp. Biol., 210, 3430-3439.

CorfieldA.P.CarrolD.MyerscoughN.ProbertC.S.J. (2001) Mucins in the gastrointestinal tract in health and disease. Front. in Biosc., 6, d1321-d1357.

CoxC.L.SecorS.M. (2008) Matched regulation of gastrointestinal performance in the Burmese pytohon, Python molurus. J. Exp. Biol., 211, 1131-1140.

DavidR.C.MeninE.MatosG.T. (1992) Histologia do aparelho digestivo de Coragyps atratus brasiliensis Bonaparte, 1850 (Falconiformes, Cathartidae). Rev. Ceres, 39, 153-176.

DehlawiG.Y.ZaherM.M. (1989) Histological studies on the alimentary tract of the colubrid snake Coluber florulentus (Family Colubridae). J.K.A.U. Sci., 1, 95-112.

DellmannH.-D.BrownE.M. (1982) Histologia veterinária. Guanabara Koogan, Rio de Janeiro.

DrapanasT.McdonaldJ.C.StewartJ.D. (1969) Serotonin release following instillation of hypertonic glucose into the proximal intestine. Ann. Surg., 156, 528-536.

FerriS.JunqueiraL.C.MedeirosL.F.MederiosL.O. (1976) Gross, microscopic and ultrastructural study of the intestinal tube of Xenodon merremii Wagler, 1824 (Ophidia). J. Anat., 121, 291-301.

FujitaT.KobayashiS. (1977) Structure and function of gut endocrine cells. Int. Rev. Cytol., 6, 187-233.

FurnessJ.B.CostaM. (1980) Types of nerves in the enteric nervous system. Neurosci., 5, 1-20.

GabeM.Saint GironsH. (1972) Rapport entre la position systematique des sauriens et les caracteristiques histochemiques de leurs cellules caliciformes duodenales. Bull. Biol. Fr. Belg., 106, 81-90.

GabellaG. (1971) Neuron size and number in the myenteric plexus of the newborn and adult rat. J. Anat., 109, 81-95.

GaudierE.HoeblerC. (2006) Physiological role of mucins in the colonic barrier integrity. Gastroenterol. Clin. Biol., 30, 965-974.

GeddesK.PhilpottD.J. (2008) A new role for intestinal alkaline phosphatase in gut barrier maintenance. Gastroenterol., 135, 8-12.

GeorgeL.L.AlvesC.E.R.CastroR.R.L. (1998) Histologia comparada. Editora Roca, São Paulo.

GoldbergS.R.BurseyC.R. (2002) Gastrointestinal helminths of seven gekkonid lizard species (Sauria: Gekkonidae) from Oceania. J. Nat. Hist., 36, 2249-2264.

GrimeliusL.WilanderE. (1980) Silver stains in the study of endocrine cells of the gut and pancreas. Invest. Cell. Pathol., 3, 3-12.

HelmstetterC.ReixN.T’FlachebbaM.PopeR.K.SecorS.M.MahoY.L.LignotJ.-H. (2009) Functional changes with feeding in the gastro-intestinal epithelia of the Burmese python (Python molurus). Zool. Sci., 26, 632-638.

HolmbergA.KaimJ.PerssonA.JensenJ.WangT.HolmgrenS. (2003) Effects of digestive status on the reptilian gut. Comp. Biochem. Physiol. A, 133, 499-518.

IversonJ.B. (1982) Adaptations to herbivory in iguanine lizards. In: RandG.M.B.RandA.S. (Eds.) Iguanas of the World: Their Behavior, Ecology, and Conservation, pp.  60-76. Noyes Publications, Park Ridge, NJ.

JinS.M.MaruchS.M.G.RodriguesM.A.M.PachecoP. (1990) Histologia geral dos intestinos de Caiman crocodilus yacare (Crocodilia: Reptilia). Rev. Bras. Zool., 7, 111-120.

JohnsonT.S.DornfeldE.J.ConteF.P. (1967) Cellular renewal of intestinal epithelium in the western fence lizard, Sceloporus occidentalis. Canad. J. Zool., 45, 63-71.

LignotJ.-H.HelmstetterC.SecorS.M. (2005) Postprancial morphological response of the intestinal epithelium of the Burmese python (Python molurus). Comp. Biochem. Physiol. A, 141, 280-291.

LuppaH. (1977) Histology of the digestive tract. In: GansC.ParsonsT.S. (Eds.) Biology of the Reptilia, pp.  225-302. Academic Press, London.

MackieR.I.RycikM.RuemmlerR.L.AminovR.I.WikelskiM. (2004) Biochemical and microbiological evidence for fermentative digestion in free-living land iguanas (Conolophus pallidus) and marine iguanas (Amblyrhynchus cristatus) on the Galápagos Archipelago. Physiol. Biochem. Zool., 77, 127-138.

MadridJ.F.BallestaJ.PastorL.M.Perez-TomasR.HernandezF. (1989) Distribution of mucins in the mucosa of the digestive tract of reptiles: a histochemical study. Acta Histochem., 85, 117-129.

MagalhãesM.S.FreitasM.L.da SilvaN.B.MouraC.E.B. (2010) Morfologia do tubo digestório da tartaruga verde (Chelonia mydas). Pesq. Vet. Bras., 30, 676-684.

Navega-GonçalvesM.E.C. (2009) Anatomia visceral comparada de seis espécies de Amphisbaenidae (Squamata: Amphisbaenia). Zool., 26, 511-526.

NogueiraK.O.P.C.RodriguesS.S.AraújoV.A.NevesC.A. (2011) Oviductal structure and ultrastructure of the oviparous gecko, Hemidactylus mabouia (Moreau de Jonnès, 1818). Anat. Rec., 294, 883-892.

O’GradyS.P.MorandoM.ÁvilaL.DearingM.D. (2005) Correlating diet and digestive tract specialization: examples from the lizard family Liolaemidae. Zool., 108, 201-210.

OtokuneforT.V.KindzekaB.I.IbiteyeI.O.OsujiG.U.ObiF.O.JackA.W.K. (2003) Salmonella in gut and droppings of three pest lizards in Nigeria. World J. Microbiol. Biotechnol., 19, 545-548.

PapernaI.LainsonR. (1999) The ultrastructure of some endogenous stages of the coccidian Eimeria boveroi Carini & Pinto, 1926 in the gut epithelial cells of the gecko Hemidactylus mabouia from Brazil. Parasite, 6, 237-242.

PapernaI.LainsonR. (2000) The fine structure of the endogenous stages of Isospora hemidactyli Carini, 1936 in the Gecko Hemidactylus mabouia from North Brazil. Mem. Inst. Oswaldo Cruz., 95, 43-47.

PereiraJ.G. (2000) Estudos histológico e histoquímico do tubo digestivo e do pâncreas do Kinosternon scorpioides Linnaeus, 1766 (Reptilia, Chelonia, Kinosternidae), muçuã. Dissertação de Mestrado. Viçosa, MG, UFV. 148 p.

Perez-TomasR.BallestaJ.MadridJ.F.PastorL.M.HernandezF. (1990) Histochemical and utrastructural study of the digestive tract of the tortoise Testudo graeca (Testudines). J. Morphol., 204, 235-245.

Perez-TomasR.BallestaJ.PastorL.M.MadridJ.F.PolakJ.M. (1989) Comparative immunohistochemical study of the gastroenteropancreatic endocrine system of three reptiles. Gen. Comp. Endocrinol., 76, 171-191.

PrzystalskiA. (1980) The dimensions of the mucosa and the structure of the alimentary canal in some reptiles. Acta Biol. Cracov., 23, 1-33.

RaybouldH.E. (2002) Visceral perception: sensory transduction in visceral afferents and nutrients. Gut., 51, i11-i14.

RhodesJ.M.BlackR.R.GallimoreR.SavageA. (1985) Histochemical demonstration of desialitation and desulphation of normal and inflammatory bowel disease rectal mucus by faccal extracts. Gut., 26, 1312-1318.

Rodrigues-SartoriS.S.NogueiraK.O.P.C.RochaA.S.NevesC.A. (2011) Morphology of the stomach of the tropical house gecko Hemidactylus mabouia (Squamata: Gekkonidae). Acta Zool., 92, 179-186.

ScillitaniG.MentinoD.LiquoriG.E.FerriD. (2012) Histochemical characterization of the mucins of the alimentary tract of the grass snake, Natrix natrix (Colubridae). Tiss. Cell., 44, 288-295.

SecorS.M.DiamondJ. (1995) Adaptive responses to feeding in Burmese pythons: pay before pumping. J. Exp. Biol., 198, 1313-1325.

SmithD.DobsonH.SpenceE. (2001) Gastrointestinal studies in the Green iguana: technique and reference values. Vet. Radiol. Ultrasound., 42, 515-520.

SolasM.T.ZapataA. (1980) Gut-associated lymphoid tissue (GALT) in reptiles: intraepithelial cells. Dev. Comp. Immunol., 4, 87-99.

SpicerS.S.LeppiT.J.StowardP.J. (1965) Suggestions for a histochemical terminology of carbohydrate-rich tissue components. J. Histochem. Cytochem., 13, 599-603.

StevensC.E.HumeI.D. (1998) Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol. Rev., 78, 393-427.

TarakçiB.G.KöprücüS.S.YamanM. (2005) An immunohistochemical study on the endocrine cells in the gastrointestinal tract of the freshwater turtle, Mauremys caspica caspica. Turk. J. Vet. Anim. Sci., 29, 581-587.

TelfordS.R.Jr. (1984) Studies on African saurian malarias: three plasmodium species from gekkonid hosts. J. Parasitol., 70, 343-354.

VanzoliniP.E. (1968) Lagartos brasileiros da família Gekkonidae (Sauria). Arq. Zool. São Paulo, 17, 1-84.

WurthS.M.MusacchiaW.J. (1964) Renewal of intestinal epithelium in the freshwater turtle. Anat. Rec., 148, 427-439.

ZugG.R.VittL.J.CaldwellJ.P. (2001) Herpetology. An Introductory Biology of Amphibians and Reptiles. Academic Press, San Diego.


  • Gross anatomy of the gut of H. mabouia. (A) Small intestine with its regions proximal (pr), median (md) and distal (ds), and large intestine with its segments proximal colon (pc) and distal colon (dc). (B) Internal coating of the proximal small intestine. (C) Internal coating of the median small intestine. (D) Internal coating of the small intestine (si) – large intestine (li) transition. (E) Internal coating of the proximal colon (pc) – distal colon (dc) transition. Arrow: fold; asterisk: valve-like projection; p: pancreas; s: stomach. This figure is published in colour in the online version.

    View in gallery
  • Scanning electron microscopy of the small intestine of H. mabouia. (A) Internal covering of the median region. (B) Internal covering of the proximal region. (C) Epithelial lining of the distal region. (D) Epithelial lining of the distal region. Arrow: fold; arrow-head: valve in the central lymph vessel; ec: enterocytes; mc: mucus-secreting cells.

    View in gallery
  • Scanning electron microscopy of the large intestine of H. mabouia. (A) Internal covering of the proximal colon. (B) Epithelial lining of the proximal colon. (C) Epithelial lining of the distal colon. (D) Epithelial lining of the distal colon. (E) Protozoa (black arrow-head) on the internal surface of the proximal colon. (F) Bacteria (white arrow-head) on the internal surface of the distal colon. Arrows: folds; asterisk: cells with retracted border; mc: mucus-secreting cells.

    View in gallery
  • Histology and histochemistry of the small intestine of H. mabouia. (A) Transversal section of the wall of the proximal region (Toluidine Blue). (A′) Detail of the muscular tunic showing a nervous ganglion (rectangle) and a mast cell (circle). (B) Transversal section of the wall of the median region (PAS). (C) Mucosa tunic of the proximal region (toluidine blue). (D) Mucosa tunic of the distal region (PAS). (E) Epithelial lining of the proximal region (alkaline phosphatase). (F) Epithelial lining of the distal region (alkaline phosphatase). (G) Mucosa tunic of the distal segment (alcian blue pH 2.5). (H) Epithelial lining of the proximal region (PAS-alcian blue). Arrow: fold; arrow-head: brushborder; asterisk: central lymphatic vessel; bm: basal membrane; ec: enterocyte; gc: goblet cells; mc: mucosa; mm: muscularis mucosae; ms: muscularis; sm: submucosa; sr: serosa; stippled circle: intraepithelial lymphocyte; stippled rectangle: mitotic cell division. This figure is published in colour in the online version.

    View in gallery
  • Enteroendocrine cells of the gut of H. mabouia. (A) Argyrophil cell (stippled circle) in the proximal small intestine. (B) Argentaffin cell (arrow) in the proximal colon. (C) Argentaffin cell (arrow) in the distal colon. This figure is published in colour in the online version.

    View in gallery
  • Histology and histochemistry of the large intestine of H. mabouia. (A) Longitudinal section of the wall of the proximal colon (toluidine blue). (B) Transversal section of the wall of the distal colon (toluidine blue). (C) Epithelial lining of the distal colon (alcian blue pH 2.5). (D) Epithelial lining of the distal colon (PAS). (E) Epithelial lining of the proximal colon (PAS-alcian blue). (F) Epithelial lining of the proximal colon (alkaline phosphatase). Arrow: crypt-like depression; arrow-head: mastocyte; circle: intraepithelial lymphocyte; ec: enterocyte; ep: epithelium; la: lymphatic agglomerate; lp: lamina propria; mc: mucus-secreting cell; mm: muscularis mucosae; ms: muscularis; sm: submucosa; sr: serosa. This figure is published in colour in the online version.

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 37 37 9
Full Text Views 37 37 18
PDF Downloads 8 8 6
EPUB Downloads 10 10 6