Sex hormones change visceral pigmentation in Eupemphix nattereri (Anura): effects in testicular melanocytes and hepatic melanomacrophages

in Animal Biology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Melanomacrophages and melanocytes are able to modify pigment intensity on the body surface as a response to temperature change, hibernation, hypoxia, infection, oxidative stress and exogenous use of hormones. This study evaluated the effect of the sex hormones 17β-estradiol and testosterone cypionate on the hepatic melanomacrophages and testicular melanocytes of Eupemphix nattereri under hyperestrogenic and hyperandrogenic conditions, eight days after daily hormonal administration as well as after a 15-day recovery period. Animals were injected subcutaneously with 17β-estradiol, testosterone cypionate or the carrier medium (as control). Histological analysis was used to examine the effect of the treatments. The results show that sex hormones altered the pigmentation of hepatic melanomacrophages and testicular melanocytes. Both liver melanomacrophages and testicular melanocytes in E. nattereri males displayed increased pigmentation after testosterone treatment, while estradiol decreased liver pigmentation only. This study describes, for the first time, the effects of sex hormones on visceral pigmentation of anura, showing the responsiveness of melanocytes and melanomacrophages to sex hormones.

Sex hormones change visceral pigmentation in Eupemphix nattereri (Anura): effects in testicular melanocytes and hepatic melanomacrophages

in Animal Biology

Sections

References

  • AgiusC.RobertsR. (2003) Melano-macrophage centres and their role in fish pathology. J. Fish Biol.26499-509.

  • AllilP.A.ViscontiM.A.CastrucciA.M.L.IsoldiM.C. (2008) Photoperiod and testosterone modulate growth and melanogenesis of S91 murine melanoma. Medicinal Chemistry4(2) 100-105.

  • AspengrenS.HedbergD.SkoldH.N.WallinM. (2009) New insights into melanosome transport in vertebrate pigment cells. Int. Rev. Cell Mol. Biol.272245-302.

  • BagnaraJ.T.HadleyM.E. (1973) Chromatophores and Color Change: the Comparative Physiology of Animal Pigmentation. Prentice-HallEnglewood Cliffs.

  • BarniS.BertoneV.CroceA.C.BottiroliG.BerniniF.GerzeliG. (1999) Increase in liver pigmentation during natural hibernation in some amphibians. J. Anat.19519-25.

  • BarniS.VaccaroneR.BertoneV.FraschiniA.BerniniF.FenoglioC. (2002) Mechanisms of changes to the liver pigmentary component during the annual cycle (activity and hibernation) of Rana esculenta L. J. Anat.200185-194.

  • CastrucciA.M.L.HaddleyM.E.HrubyV.J. (1984) Melanotropin bioassays: in vitro and in vivo comparisons. Gen. Comp. Endocrinol.55104-111.

  • Cerdá-ReverterJ.M.CanosaL.F.PeterR.E. (2006) Regulation of the hypothalamic melanin-concentrating hormone neurons by sex steroids in the goldfish: possible role in the modulation of luteinizing hormone secretion. Neuroendocrin.84364-377.

  • ChristiansenJ.L.GrzybowskiJ.M.KodamaR.M. (1996) Melanomacrophage aggregations and their age relationships in the yellow mud turtle, Kinosternon flavescens (Kinosternidae). Pig. Cell. Res.9185-190.

  • ColomboS.BerlimI.DelmasV.LarueL. (2011) Classical and non-classical melanocytes in vertebrates. In: BorovanskýJ.RileyP.A. (Eds.) Melanins and Melanosomes: Biosynthesis Biogenesis Physiological and Pathological Functions pp.  21-62. Wiley-VCH Verlag GmbH & Co. KGaAWeinheim.

  • CorsaroC.ScaliaM.LeottaM.MondioF.SichelG. (2000) Characterization of Kupffer cells in some Amphibia. J. Anat.196249-261.

  • CorsaroC.ScaliaM.SinatraE.SichelG. (1990) Circannual rhythm of the melanin content in frog liver (Rana esculenta L.). Pig. Cell. Res.3120-122.

  • DubeyS.RoulinA. (2014) Evolutionary and biomedical consequences of internal melanins. Pig. Cell. Mel. Res.27327-338.

  • FenoglioC.BoncompagniE.FasolaM.GandiniC.ComizzoliS.MilanesiG.BarniS. (2005) Effects of environmental pollution on the liver parenchymal cells and Kupffer-melanomacrophagic cells of the frog Rana esculenta. Ecotoxicol. Environ. Saf.60259-268.

  • Franco-BelussiL.OliveiraC. (2001) Lipopolysaccharides induce changes in the visceral pigmentation of Eupemphix nattereri (Anura: Leiuperidae). Zool.114298-305.

  • Franco-BelussiL.CastrucciA.M.L.OliveiraC. (2013) Responses of melanocytes and melanomacrophages of Eupemphix nattereri (Anura: Leiuperidae) to Nle4, D-Phe7-α-melanocyte stimulating hormone and LPS. Zool.116316-324.

  • Franco-BelussiL.SantosL.R.S.ZieriR.OliveiraC. (2012) Visceral pigmentation in three species of the genus Scinax (Anura: Hylidae): distinct morphological pattern. Anat. Rec.295298-306.

  • FrangioniG.BorgioliG.BiancheS.PillozziS. (2000) Relationships between hepatic melanogenesis and respiratory conditions in the newt, Triturus carnifex. J. Exp. Zool.287120-127.

  • GalloneA.GuidaG.MaidaI.CíceroR. (2002) Spleen and liver pigmented macrophages of Rana esculenta L. A new melanogenic system? Pig. Cell. Res.1532-40.

  • GalvánI.MøllerP.ErrizoeJ. (2011) Testicular melanization has evolved in birds with high mtDNA mutation rates. J. Evol. Biol.24988-998.

  • GuidaG.ZannaP.GalloneA.ArgenzioE.CiceroR. (2004) Melanogenic response of the Kupffer cells of Rana esculenta L. to melanocyte stimulating hormone. Pig. Cell. Res.17128-134.

  • HadleyM.E.QuevedoW.C. (1967) The role of epidermal melanocytes in adaptive color changes in amphibians. In: MontagnaW.HuF. (Eds.) Advances in Biology of the Skin pp.  337-358. Pergamon PressGlasgow.

  • HadleyM.E.MieyrJ.H.MartinB.E.CastrucciA.M.L.HrubyV.J.SawyerT.K.PowersE.A.RaoK.R. (1985) [Nle4, D-Phe7]-α-MSH: a superpotent melanotropin with prolonged action on vertebrate chromatophores. Comp. Biochem. Physiol. A: Comp. Physiol.811-6.

  • HayesT.B.MenendezK.P. (1999) The effect of sex steroids on primary and secondary sex differentiation in the sexually dichromatic reedfrog (Hyperolius argus: Hyperolidae) from the Arabuko Sokoke Forest of Kenya. Gen. Comp. Endocrin.115188-199.

  • HerráezM.P.ZapataA.G. (1991) Structural characterization of the melanomacrophage centres (MMC) of goldfish Carassius auratus. Eur. J. Morphol.2989-102.

  • HettyeyA.HerczegG.LaurilaA.CrochetP.A.MeriläJ. (2009) Body temperature, size, nuptial coloration and mating success in male moor frogs (Rana arvalis). Amphibia-Reptilia30(1) 37-43.

  • HimesP.J.HadleyM.E. (1971) In vitro effects of steroid hormones on frog melanophores. J. Invest. Dermatol.57337-342.

  • JianD.JiangD.SuJ.ChenW.HuX.KuangY.ChenX. (2011) Diethylstilbestrol enhances melanogenesis via cAMP-PKA-mediating up-regulation of tyrosinase and MITF in mouse B16 melanoma cells. Steroids76(12) 1297-1304.

  • LoganD.W.BurnS.F.JacksonI.J. (2006) Regulation of pigmentation in zebrafish melanophores. Pig. Cell. Res.3206-213.

  • MichalczykD.PopikM.SalwinskiA.PlonkaP.M. (2009) Extradermal melanin transfer? Lack of macroscopic spleen melanization in old C57BL/6 mice with de-synchronized hair cycle. Acta Biochim. Pol.56(2) 343-353.

  • Michalczyk-WetulaD.SalwińskiA.PopikM.JakubowskaM.PlonkaP.M. (2013) Splenic melanosis during normal murine C57BL/6 hair cycle and after chemotherapy. Acta Biochim. Pol.60(3) 313-321.

  • OliveiraC.ZieriR. (2005) Pigmentação testicular em Physalaemus nattereri (Steindachner) (Amphibia, Anura) com observações anatômicas sobre o sistema pigmentar extracutâneo. Rev. Bras. Zool.22454-460.

  • PrelovisekP.BulogB. (2003) Biogenesis of melanosomes in Kupffer cells of Proteus anguinus (Urodela, Amphibia). Pig. Cell. Res.16345-350.

  • ProveteD.B.Franco-BelussiL.SantosL.R.S.ZieriR.MorescoR.M.MartinsI.A.AlmeidaS.C.OliveiraC. (2012) Phylogenetic signal and variation of visceral pigmentation in eight anuran families. Zool. Scrip.41547-556.

  • RansonM.PosenS.MasonR.S. (1988) Human melanocytes as a target tissue for hormones: in vitro studies with 1 alpha-25, dihydroxyvitamin D3, alpha-melanocyte stimulating hormone, and betaestradiol. J. Investig. Dermatol.91593-598.

  • RichardsC.M. (1982) The alteration of chromatophore expression by sex hormones in the Kenyan reed frog, Hyperolius viridiflavus. Gen. Comp. Endocrin.4658-67.

  • RoubosE.W.Van WijkD.C.KozicsT.ScheenenW.J.JenksB.G. (2010) Plasticity of melanotrope cell regulations in Xenopus laevis. Eur. J. Neur.322082-2086.

  • SantosF.C.A.Falleiros-JúniorL.R.CorradiL.S.VilamaiorP.S.L.TabogaS.R. (2007) Experimental endocrine therapies promote epithelial cytodifferentiation and ciliogenesis in the gerbil female prostate. Cell. Tissue Res.328617-624.

  • SantosL.R.S.Franco-BelussiL.ZieriR.BorgesR.E.OliveiraC. (2014) Effects of thermal stress on hepatic melanomacrophages of Eupemphix nattereri (Anura). Anat. Rec.297864-875.

  • SchraermeyerU. (1994) Fine structure of melanogenesis in the ink sac of Sepia officinalis. Pig. Cell Res.752-60.

  • SichelG.ScaliaM.CorsaroC. (2002) Amphibia Kupffer cells. Microsc. Res. Tech.57477-490.

  • SichelG.ScaliaM.MondioF.CorsaroC. (1997) The amphibian Kupffer cells build and demolish melanosomes: an ultrastructural point of view. Pig. Cell Res.10271-287.

  • SugimotoM. (2002) Morphological color changes in fish: regulation of pigment cell density and morphology. Microsc. Res. Tech.58496-503.

  • Van der HeijdenA.Van DijkJ.E.LemmensA.G.BeynenA.C. (1995) Spleen pigmentation in young C57BL mice is caused by accumulation of melanin. Lab. Animals29(4) 459-463.

  • WassermannH.P. (1967) Extension of the concept “vertebrate epidermal melanin unit” to embrace visceral pigmentation and leucocytic melanin transport. Nature213(5073) 213.

  • WeissmanI. (1967) Genetic and histochemical studies on mouse spleen black spots. Nature215(5098) 315.

  • YasutomiM. (1987) Migration of epidermal melanophores to the dermis through the basement membrane during metamorphosis in the frog, Rana japonica. Pig. Cell Res.1(3) 181-187.

  • ZieriR.TabogaS.R.OliveiraC. (2007) Melanocytes in the testes of Eupemphix nattereri (Anura, Leiuperidae): histological, stereological, and ultrastructural aspects. Anat. Rec.290795-800.

  • ZuastiA.Jiménez-CervantesC.García-BorrónJ.C.FerrerC. (1998) The melanogenic system of Xenopus laevis. Arch. Histol. Cytol.61305-316.

  • ZuastiA.JaraJ.R.FerrerC.SolanoE. (1989) Occurrence of melanin granules and melanosynthesis in the kidney of Sparzis azimtzu. Pig. Cell. Res.293-100.

Figures

  • View in gallery

    Histological section of the Eupemphix nattereri liver stained by hematoxylin-eosin. (A) Hepatic parenchyma showing melanomacrophages (light arrows) and sinusoids () between hepatocytes (H). (B) Detail of melanomacrophages (M) with cytoplasmic pigmented granules and proximity to sinusoids containing erythrocytes (E). Hepatocytes showing evident nucleus (N). This figure is published in colour in the online version.

  • View in gallery

    Histological section of the Eupemphix nattereri testes stained by hematoxylin-eosin. (A) Testicular tissue showing seminiferous locule (L) and melanocytes in interstitial region (arrow). (B) Detail of interstitial region showing melanocytes (arrow) with melanin in cytoplasm. This figure is published in colour in the online version.

  • View in gallery

    Effects of 17β-estradiol and testosterone cypionate on liver pigmentation of Eupemphix nattereri evidenced by the amount of melanin within melanomacrophages. 8-day group: animals administered with hormone for seven days and analyzed twenty-four hours after treatment stopped. 15-day recovery: animals administered with hormone for seven days and recovered for 15 days before analysis. Mean ± standard error. Different letters indicate significant differences between the treatments. ANOVA followed by Tukey test (P<0.05).

  • View in gallery

    Effects of 17β-estradiol and testosterone cypionate on Eupemphix nattereri testes pigmentation evidenced by the amount of melanin within testicular melanocytes. 8-day group: animals administered with hormone for seven days and analyzed twenty-four hours after treatment stopped. 15-day recovery: animals administered with hormone for seven days and recovered for 15 days before analysis. Mean ± standard error. Different letters indicate significant differences between the treatments. ANOVA followed by Tukey test (P<0.05).

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 114 114 13
Full Text Views 127 127 0
PDF Downloads 18 18 0
EPUB Downloads 1 1 0