Cytokine proteins are involved in different signaling pathways throughout the central nervous system. To study the efficacy of an inflammatory cytokine, the macrophage migration inhibitory factor (MIF), which acts via several receptor molecules including the receptor CXCR2, male rats’ behaviors were determined after intracerebroventricular (ICV) administration of MIF. There were three treatments: One group received only the cytokine, a second group received MIF and an CXCR2 antagonist (SB265610), and a third, control group received only the carrier medium saline. All rats were subjected to a subcutaneous injection of formalin in the hind paw after the ICV administration. Pain behaviors induced after formalin injection showed increased values in the MIF group of licking in the first phase and increased values of flexing, licking and paw-jerk in the second phase. On the contrary, spontaneous behaviors induced by formalin injection changed alternatively between the two groups compared with saline. These results suggest a possible effect of cytokine MIF on central nervous processes implicated in pain modulation mediated by the receptor CXCR2.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Ahn D.K., Lee K.R., Lee H.J., Kim S.K., Choi H.S., Lim E.J., Park J.S. (2005) Intracisternal administration of chemokines facilitated formalin-induced behavioral responses in the orofacial area of freely moving rats. Brain Res. Bull., 66, 50-58.
Alexander J.K., Cox G.M., Tian J.-B., Zha A.M., Wei P., Kigerl K.A., Reddy M.K., Dagia N.M., Sielecki T., Zhu M.X., Satoskar A.R., McTigue D.M., Whitacre C.C., Popovich P.G. (2012) Macrophage migration inhibitory factor (MIF) is essential for inflammatory and neuropathic pain and enhances pain in response to stress. Exp. Neurol., 236, 351-362.
Aloisi A.M., Sacerdote P., Albonetti M.E., Carli G. (1995) Sex-related effects on behaviour and beta-endorphin of different intensities of formalin pain in rats. Brain Res., 699, 242-249.
Atsumi T., Cho Y.-R., Leng L., McDonald C., Yu T., Danton C., Hong E.-G., Mitchell R.A., Metz C., Niwa H., Takeuchi J., Onodera S., Umino T., Yoshioka N., Koike T., Kim J.K., Bucala R. (2007) The proinflammatory cytokine macrophage migration inhibitory factor regulates glucose metabolism during systemic inflammation. J. Immunol., 179, 5399-5406.
Bains J.S., Oliet S.H.R. (2007) Glia: they make your memories stick! Trends Neurosci., 30, 417-424.
Bartfai T., Schultzberg M. (1993) Cytokines in neuronal cell types. Neurochem. Int., 22, 435-444.
Bernhagen J., Krohn R., Lue H., Gregory J.L., Zernecke A., Koenen R.R., Dewor M., Georgiev I., Schober A., Leng L., Kooistra T., Fingerle-Rowson G., Ghezzi P., Kleemann R., McColl S.R., Bucala R., Hickey M.J., Weber C. (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat. Med., 13, 587-596.
Carr F.B., Géranton S.M., Hunt S.P. (2014) Descending controls modulate inflammatory joint pain and regulate CXC chemokine and iNOS expression in the dorsal horn. Mol. Pain, 10, 39-53.
Chung I.Y., Benveniste E.N. (1990) Tumor necrosis factor-alpha production by astrocytes. induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. J. Immunol., 144, 2999-3007.
Costa K.M., Maciel I.S., Kist L.W., Campos M.M., Bogo M.R. (2014) Pharmacological inhibition of CXCR2 chemokine receptors modulates paraquat-induced intoxication in rats. PLoS ONE, 9, 105740-105752.
Deverman B.E., Patterson P.H. (2009) Cytokines and CNS development. Neuron, 64, 61-78.
Dornelles F.N., Andrade E.L., Campos M.M., Calixto J.B. (2014) Role of CXCR2 and TRPV1 in functional, inflammatory and behavioural changes in the rat model of cyclophosphamide-induced haemorrhagic cystitis. Br. J. Pharmacol., 171, 452-467.
Gruber-Schoffnegger D., Drdla-Schutting R., Hönigsperger C., Wunderbaldinger G., Gassner M., Sandkühler J. (2013) Induction of thermal hyperalgesia and synaptic long-term potentiation in the spinal cord lamina I by TNF-α and IL-1β is mediated by glial cells. J. Neurosci., 33, 6540-6551.
Guo W., Wang H., Watanabe M., Shimizu K., Zou S., LaGraize S.C., Wei F., Dubner R., Ren K. (2007) Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J. Neurosci., 27, 6006-6018.
Hughes V. (2012) Microglia: the constant gardeners. Nature, 485, 570-572.
John G.R., Lee S.C., Brosnan C.F. (2003) Cytokines: powerful regulators of glial cell activation. Neuroscientist, 9, 10-22.
Kao D.-J., Li A.H., Chen J.-C., Luo R.-S., Chen Y.-L., Lu J.-C., Wang H.-L. (2012) CC chemokine ligand 2 upregulates the current density and expression of TRPV1 channels and Nav1.8 sodium channels in dorsal root ganglion neurons. J. Neuroinflammation, 9, 189-222.
Kasama T., Ohtsuka K., Sato M., Takahashi R., Wakabayashi K., Kobayashi K. (2010) Macrophage migration inhibitory factor: a multifunctional cytokine in rheumatic diseases. Arthritis, 2010, 106202-106212.
Kettenmann H., Hanisch U.-K., Noda M., Verkhratsky A. (2011) Physiology of microglia. Physiol. Rev., 91, 461-553.
Klasen C., Ohl K., Sternkopf M., Shachar I., Schmitz C., Heussen N., Hobeika E., Levit-Zerdoun E., Tenbrock K., Reth M., Bernhagen J., El Bounkari O. (2014) MIF promotes B cell chemotaxis through the receptors CXCR4 and CD74 and ZAP-70 signaling. J. Immunol., 192, 5273-5284.
Larochelle C., Alvarez J.I., Prat A. (2011) How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett., 585, 3770-3780.
Lund S., Christensen K.V., Hedtjärn M., Mortensen A.L., Hagberg H., Falsig J., Hasseldam H., Schrattenholz A., Pörzgen P., Leist M. (2006) The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions. J. Neuroimmunol., 180, 71-87.
Miller R.J., Jung H., Bhangoo S.K., White F.A. (2009) Cytokine and chemokine regulation of sensory neuron function. Handb. Exp. Pharmacol., 194, 417-449.
Morand E.F., Leech M., Bernhagen J. (2006) MIF: a new cytokine link between rheumatoid arthritis and atherosclerosis. Nat. Rev. Drug Discov., 5, 399-410.
Nelson T.E., Ur C.L., Gruol D.L. (2002) Chronic interleukin-6 exposure alters electrophysiological properties and calcium signaling in developing cerebellar Purkinje neurons in culture. J. Neurophysiol., 88, 475-486.
Ohta S., Misawa A., Fukaya R., Inoue S., Kanemura Y., Okano H., Kawakami Y., Toda M. (2012) Macrophage migration inhibitory factor (MIF) promotes cell survival and proliferation of neural stem/progenitor cells. J. Cell Sci., 125, 3210-3220.
Ousman S.S., Kubes P. (2012) Immune surveillance in the central nervous system. Nat. Neurosci., 15, 1096-1101.
Pascual O., Ben Achour S., Rostaing P., Triller A., Bessis A. (2011) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl. Acad. Sci., 109, 197-205.
Paxinos G., Watson C. (2006) The Rat Brain in Stereotaxic Coordinates. 6th Edition. Elsevier, Sydney.
Petermann F., Korn T. (2011) Cytokines and effector T cell subsets causing autoimmune CNS disease. FEBS Lett., 585, 3747-3757.
Petrovsky N., Socha L., Silva D., Grossman A.B., Metz C., Bucala R. (2003) Macrophage migration inhibitory factor exhibits a pronounced circadian rhythm relevant to its role as a glucocorticoid counter-regulator. Immunol. Cell Biol., 81, 137-143.
Ragozzino D. (2002) CXC chemokine receptors in the central nervous system: role in cerebellar neuromodulation and development. J. Neurovirol., 8, 559-572.
Rittner H.L., Labuz D., Schaefer M., Mousa S.A., Schulz S., Schäfer M., Stein C., Brack A. (2006) Pain control by CXCR2 ligands through Ca2+-regulated release of opioid peptides from polymorphonuclear cells. FASEB J., 20, 2627-2629.
Santello M., Bezzi P., Volterra A. (2011) TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron, 69, 988-1001.
Savaskan N.E., Fingerle-Rowson G., Buchfelder M., Eyüpoglu I.Y. (2012) Brain miffed by macrophage migration inhibitory factor. Int. J. Cell Biol., 2012, 139573-139584.
Schwartz V., Lue H., Kraemer S., Korbiel J., Krohn R., Ohl K., Bucala R., Weber C., Bernhagen J. (2009) A functional heteromeric MIF receptor formed by CD74 and CXCR4. FEBS Lett., 583, 2749-2757.
Semple B.D., Bye N., Ziebell J.M., Morganti-Kossmann M.C. (2010) Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury. Neurobiol. Dis., 40, 394-403.
Srinivasan D., Yen J.-H., Joseph D.J., Friedman W. (2004) Cell type-specific interleukin-1beta signaling in the CNS. J. Neurosci., 24, 6482-6488.
Sweitzer S.M., Colburn R.W., Rutkowski M., DeLeo J.A. (1999) Acute peripheral inflammation induces moderate glial activation and spinal IL-1beta expression that correlates with pain behavior in the rat. Brain Res., 829, 209-221.
Tanuma N., Sakuma H., Sasaki A., Matsumoto Y. (2006) Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis. Acta Neuropathol., 112, 195-204.
Veenstra M., Ransohoff R.M. (2012) Chemokine receptor CXCR2: physiology regulator and neuroinflammation controller? J. Neuroimmunol., 246, 1-9.
Wang F., Xu S., Shen X., Guo X., Peng Y., Yang J. (2011) Spinal macrophage migration inhibitory factor is a major contributor to rodent neuropathic pain-like hypersensitivity. Anesthesiology, 114, 643-659.
Wang J.-G., Strong J.A., Xie W., Yang R.-H., Coyle D.E., Wick D.M., Dorsey E.D., Zhang J.-M. (2008) The chemokine CXCL1/growth related oncogene increases sodium currents and neuronal excitability in small diameter sensory neurons. Mol. Pain, 4, 38-53.
Yamamoto J., Nishiyori A., Takami S., Ohtani Y., Minami M., Satoh M. (1998) A hyperalgesic effect of intracerebroventricular cytokine-induced neutrophil chemoattractant-1 in the rat paw pressure test. Eur. J. Pharmacol., 363, 131-133.
Yu X.-Y., Chen H.-M., Liang J.-L., Lin Q.-X., Tan H.-H., Fu Y.-H., Liu X.-Y., Shan Z.-X., Li X.-H., Yang H.-Z., Yang M., Li Y., Lin S.-G. (2011) Hyperglycemic myocardial damage is mediated by proinflammatory cytokine: macrophage migration inhibitory factor. PLoS ONE, 6, 16239-16251.
Zhang N., Inan S., Inan S., Cowan A., Sun R., Wang J.M., Rogers T.J., Caterina M., Oppenheim J.J. (2005) A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1. Proc. Natl. Acad. Sci. U.S.A., 102, 4536-4541.
Zhang Z.-J., Cao D.-L., Zhang X., Ji R.-R., Gao Y.-J. (2013) Chemokine contribution to neuropathic pain: respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons. Pain, 154, 2185-2197.
Zimmermann M. (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain, 16, 109-110.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 531 | 58 | 6 |
Full Text Views | 216 | 1 | 0 |
PDF Views & Downloads | 23 | 1 | 0 |
Cytokine proteins are involved in different signaling pathways throughout the central nervous system. To study the efficacy of an inflammatory cytokine, the macrophage migration inhibitory factor (MIF), which acts via several receptor molecules including the receptor CXCR2, male rats’ behaviors were determined after intracerebroventricular (ICV) administration of MIF. There were three treatments: One group received only the cytokine, a second group received MIF and an CXCR2 antagonist (SB265610), and a third, control group received only the carrier medium saline. All rats were subjected to a subcutaneous injection of formalin in the hind paw after the ICV administration. Pain behaviors induced after formalin injection showed increased values in the MIF group of licking in the first phase and increased values of flexing, licking and paw-jerk in the second phase. On the contrary, spontaneous behaviors induced by formalin injection changed alternatively between the two groups compared with saline. These results suggest a possible effect of cytokine MIF on central nervous processes implicated in pain modulation mediated by the receptor CXCR2.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 531 | 58 | 6 |
Full Text Views | 216 | 1 | 0 |
PDF Views & Downloads | 23 | 1 | 0 |