The effects of Biorock-associated electric fields on the Caribbean reef shark (Carcharhinus perezi) and the bull shark (Carcharhinus leucas)

in Animal Biology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Healthy coral reefs are biologically diverse and provide vital ecosystem services. However, decreasing water quality and global warming are key contributors to coral reef decline, which poses substantial environmental threats. In response to this degradation, an innovative coral reef restoration technology, called Biorock, utilizes weak direct current electric fields to cause limestone deposition on conductive materials, inevitably inducing prolific coral reef growth. Although expediting coral growth, research on how the associated electric fields may impact the behavioural patterns of teleosts and/or organisms (i.e. elasmobranchs) possessing electroreception capabilities is lacking. Therefore, we studied the behavioural responses of two shark species, the bull shark (Carcharhinus leucas) and the Caribbean reef shark (Carcharhinus perezi) and multiple teleost species towards weak direct current electric fields in Bimini, Bahamas. Generalized linear mixed model analyses based on 90 trials illustrate that both the feeding and avoidance behaviors of C. leucas and C. perezi were significantly associated with treatment type, with the weak experimental electrode treatments resulting in the greatest quantity of avoidances and fewest feedings for both species. However, data analyses illustrate that teleost feeding behavior was not observably impacted by experimental treatments. Although the Biorock technology exhibits promise in coral reef restoration, the findings from this study illustrate a need for future large-scale studies assessing shark behavioral patterns around these devices, since the deterrence of apex predators may impact ecosystem balance.

The effects of Biorock-associated electric fields on the Caribbean reef shark (Carcharhinus perezi) and the bull shark (Carcharhinus leucas)

in Animal Biology

Sections

References

BaktiL.A.VirgotaA.DamayantiL.P.RadimanT.H.RetnowulanA.HernawatiSabilA.RobbeD. (2012) Biorock reef restoration in Gili Trawangan, North Lombok, Indonesia. In: GoreauT.J.TrenchR.K. (Eds) Innovative Methods of Marine Ecosystem Restoration pp.  59-80. CRC PressFlorida, USA.

BastianJ. (1994) Electrosensory organisms. Phys. Today4730-37.

BaumJ.K.MyersR.A. (2004) Shifting baselines and the decline of pelagic sharks in the Gulf of Mexico. Ecol. Lett.7135-145.

BellC.C. (2001) Memory-based expectations in electrosensory systems. Curr. Opin. Neurobiol.11481-487.

BirkelandC. (1997) Introduction. In: BirkelandC. (Ed.) Life and Death of Coral Reefs pp.  1-12. Chapman & HallNew York.

BrillR.BushnellP.SmithL.SpeaksC.SundaramR.StroudE.WangJ. (2009) The repulsive and feeding-deterrent effects of electropositive metals on juvenile sandbar sharks (Carcharhinus plumbeus). Fish. Bull.107298-307.

BrunoJ.F.ValdiviaA. (2016) Coral reef degradation is not correlated with human population density. Sci. Rep.629778.

BryantD.BurkeL.McmanusJ.SpaldingM. (2000) Reef at Risk: a Map-Based Indicator of Threats to the World’s Coral Reefs. 1st Edition. World Resources InstituteWashington, D.C.

BurkeL.KuraY.KassemK.RevengaC.SpaldingM.McallisterD. (2001) Pilot Analysis of Global Ecosystems: Coastal Ecosystems. 1st Edition. World Resources InstituteWashington, D.C.

CarrM.H.HixonM.A. (1997) Artificial reefs: the importance of comparisons with natural reefs. Fisheries22(4) 28-33.

ConnellJ.H. (1978) Diversity in tropical rain forests and coral reefs. Science1991302-1310.

CrombieA.C. (1947) Interspecific competition. J. Anim. Ecol.16(1) 44-73.

DownsC.A.WoodleyC.M.RichmondR.H.LanningL.L.OwenR. (2005) Shifting the paradigm of coral-reef ‘health’ assessment. Marine Poll. Bull.51486-494.

DulvyN.K.FowlerS.L.MusickJ.A.CavanaghR.D.KyneP.M.HarrisonL.R.CarlsonJ.K.DavidsonL.N.FordhamS.V.FrancisM.P.PollockC.M. (2014) Extinction risk and conservation of the world’s sharks and rays. Elife3e00590.

EllisS.EllisE. (2001) Recent advances in lagoon-based farming practices for eight species of commercially valuable hard and soft corals. Technical Report. CTSA 147 63 pp.

FarawayJ.J. (2006) Extending the Linear Model With R: Generalized Linear Mixed Effects and Nonparametric Regression Models. Chapman & Hall/CRCBoca Raton.

GibbsM.A. (2004) Lateral line receptors: where do they come from developmentally and where is our research going? Brain Behav. Evol.64163-181.

GilbertP.W.GilbertC. (1973) Sharks and shark deterrents. Under. J.569-79.

GoreauT.J. (2012) Marine electrolysis for building materials and environmental restoration. In: KleperisJ.LinkovV. (Eds) Electrolysis pp.  273-290. InTech PublishingRijeka, Croatia.

GoreauT.J. (2014) Electrical stimulation greatly increases settlement, growth, survival, and stress resistance of marine organisms. Nat. Resour. J.5527-537.

GoreauT.J.HayesR.L. (1994) Coral bleaching and ocean “hot spots”. Ambio23176-180.

GoreauT.J.TrenchR.K. (Eds) (2012) Innovative Methods of Marine Ecosystem Restoration. CRC PressFlorida, USA. eBook ISBN: 978-1-4665-5774-1.

HeithausM.R.FridA.WirsingA.J.WormB. (2008) Predicting ecological consequences of marine top predator declines. Trends Ecol. Evolut.23202-210.

HurlbertS.H. (1984) Pseudoreplication and the design of ecological field experiments. Ecol. Monogr.54187-211.

HuveneersC.RogersP.J.SemmensJ. (2012) Effects of the Shark Shield™ electric deterrent on the behaviour of white sharks (Carcharodon carcharias). SARDI Publication No F2012/000123-1 Research Report Series No. 632 South Australian Research and Development Institute.

HyunS.-Y.CadrinS.X.RomanS. (2014) Fixed and mixed effect models for fishery data on depth distribution of Georges Bank yellowtail flounder. Fish. Res.157180-186.

JordanL.J.MandelmanJ.W.KajiuraS.M. (2011) Behavioral responses to weak electric fields and a lanthanide metal in two shark species. J. Exp. Mar. Biol. Ecol.409345-350.

JordanL.K.MandelmanJ.W.MccombD.M.FordhamS.V.CarlsonJ.K.WernerT.B. (2013) Linking sensory biology and fisheries bycatch reduction in elasmobranch fishes: a review with new directions for research. Conserv. Physiol.1cot002.

JosbergerE.E.HassanzadehP.DengY.SohnJ.RegoM.J.AmemiyaC.T.RolandiM. (2016) Proton conductivity in ampullae of Lorenzini jelly. Sci. Adv.2e1600112.

KajiuraS.M.HollandK.N. (2002) Electroreception in juvenile scalloped hammerhead and sandbar sharks. J. Exp. Biol.2053609-3621.

KajiuraS.M.FitzgeraldT.P. (2009) Response of juvenile scalloped hammerhead sharks to electric stimuli. Zoology112241-250.

KalmijnA. (1966) Electro-perception in sharks and rays. Nature2121232.

KalmijnA. (1971) The electric sense of sharks and rays. J. Exp. Biol.55371-383.

KalmijnA.J. (1974) The detection of electric fields from inanimate and animate sources other than electric organs. In: FessardA. (Ed.) Handbook of Sensory Physiology pp.  148-200. Springer-VerlagBerlin.

KalmijnA. (1982) Electric and magnetic field detection in elasmobranch fishes. Science218916-918.

KalmijnA. (1984) Theory of electromagnetic orientation: a further analysis. In: BolisL.KeynesR.D.MaddrellS.H.P. (Eds) Comparative Physiology of Sensory Systems pp.  525-560. Cambridge University PressCambridge, UK.

KalmijnA. (2000) Detection and processing of electromagnetic and near-field acoustic signals in elasmobranch fishes. Philos. Trans. R. Soc. London [Biol.]3551135-1141.

KempsterR.M.McCarthyI.D.CollinS.P. (2012) Phylogenetic and ecological factors influencing the number and distribution of electroreceptors in elasmobranchs. J. Fish Biol.802055-2088.

LeahyS.M.McCormickM.I.MitchellM.D.FerrariM.C. (2011) To fear or to feed: the effects of turbidity on perception of risk by a marine fish. Biol. Lett.7811-813.

LeãoZ.KikuchiR. (2005) A relic coral fauna threatened by global changes and human activities, eastern Brazil. Marine Poll. Bull.51599-611.

LuciforaL.O.GarcíaV.B.WormB. (2011) Global diversity hotspots and conservation priorities for sharks. PLoS One6e19356.

ManireC.A.GruberS.H. (1990) Many sharks may be headed towards extinction. Conserv. Biol.410-11.

MarcotteM.LoweC. (2008) Behavioral response of two species of sharks to pulsed, direct current electrical fields: testing a potential shark deterrent. Mar. Technol. Soc. J.4253-61.

McCombD.M.TricasT.C.KajiuraS.M. (2009) Enhanced visual fields in hammerhead sharks. J. Exp. Biol.2124010-4018.

MolinaJ.M.CookeS.J. (2012) Trends in shark bycatch research: current status and research needs. Rev. Fish Biol. Fish.22719-737.

MontgomeryJ.C.CoombsS.ConleyR.A.BodznickD. (1995) Hindbrain sensory processing in lateral line, electrosensory, and auditory systems: a comparative overview of anatomical and functional similarities. Aud. Neurosci.1207-231.

MundayP.L.JonesG.P.CaleyM.J. (2001) Interspecific competition and coexistence in a guild of coral-dwelling fishes. Ecology822177-2189.

MusickJ.A.BurgessG.CaillietG.CamhiM.FordhamS. (2000) Management of sharks and their relatives (Elasmobranchii). Fisheries259-13.

MyersR.A.BaumJ.K.ShepherdT.D.PowersS.P.PetersonC.H. (2007) Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science3151846-1850.

NelsonD.R.JohnsonR.H. (1980) Behavior of the reef sharks of Rangiroa, French Polynesia. Nat. Geo. Soc. Res. Rep.12479-498.

O’ConnellC.P.GuttridgeT.L.BrooksJ.FingerJ.S.GruberS.H.HeP. (2013) Behavioral modification of visually deprived lemon sharks (Negaprion brevirostris) towards magnetic fields. J. Exp. Mar. Biol. Ecol.453131-137.

O’ConnellC.P.HyunS.-Y.RillahanC.B.HeP. (2014) Bull shark (Carcharhinus leucas) exclusion properties of the Sharksafe barrier and behavioral validation using the ARIS sonar technology. Glob. Ecol. Cons.2300-314.

PolisG.A. (1981) The evolution and dynamics of intraspecific predation. Ann. Rev. Ecol. Sys.12225-251.

RanåkerL.NilssonP.A.BrönmarkC. (2012) Effects of degraded optical conditions on behavioural responses to alarm cues in a freshwater fish. PLoS One7(6) e38411.

Rivera-VicenteA.C.SewellJ.TricasT.C. (2011) Electrosensitive spatial vectors in elasmobranch fishes: implications for source localization. PLoS One6e16008.

RobbinsW.D.PeddemorsV.M.KennellyS.J. (2011) Assessment of permanent magnets and electropositive metals to reduce the line-based capture of Galapagos sharks, Carcharhinus galapagensis. Fish. Res.109100-106.

SchoenerT.W. (1983) Field experiments on interspecific competition. Amer. Nat.122(2) 240-285.

ShafirS.RinkevichB. (2010) Integrated long-term mid-water coral nurseries: a management instrument evolving into a floating ecosystem. U. Maur. Res. J.16365-386.

SmitC.F.PeddemorsV.M. (2003) Estimating the probability of a shark attack when using an electric repellent. S. Afr. Stat. J.3759-78.

SmithE.D. (1966) Electrical shark barrier research. Geo-Mar. Tech.210-14.

SmithE.D. (1973) Electric anti-shark cable. Civil Eng.68174-176.

SmithE.D. (1974) Electro-physiology of the electrical shark-repellant. Tran. In. Elect. Eng. 166-181.

SnyderD.E. (2003) Invited overview: conclusions from a review of electrofishing and its harmful effects on fish. Rev. Fish Biol. Fish.13445-453.

SouterD.W.LindénO. (2000) The health and future of coral reef systems. Ocean Coast. Manag.43657-688.

South African National Space Agency (SANSA) (2012) Interim report on measurement and analysis of the electric fields produced by the SharkPOD and Shark Shield. Doc No: 6035-0006-722-A1.

SpaldingM.D.GrenfellA.M. (1997) New estimates of global and regional coral reef areas. Coral Reefs16225-230.

SpaldingM.D. (1997) Mapping global coral reef distribution. In: Proceeding of 8th International Coral Reef Symposium vol. 2 pp.  1555-1560.

SpaldingM.D. (2000) Spatial variation in coral reef fish biodiversity at intermediate scales around oceanic islands. In: Proceeding of 9th International Coral Reef Symposium vol. 1 pp.  23-27.

StevensJ.D.BonfilR.DulvyN.K.WalkerP.A. (2000) The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J. Mar. Sci.57476-494.

StilingP.D.BrodbeckB.V.StrongD.R. (1984) Intraspecific competition in Hydrellia valida (Diptera: Ephydridae), a leaf miner of Spartina alterniflora. Ecology65(2) 660-662.

StonerA.W.KaimmerS.M. (2008) Reducing elasmobranch bycatch: laboratory investigation of rare Earth metal and magnetic deterrents with spiny dogfish and Pacific halibut. Fish. Res.92162-168.

TricasT.C. (2001) The neuroscience of the elasmobranch electrosensory world: why peripheral morphology shapes behavior. Environ. Biol. Fishes6077-92.

Figures

  • View in gallery

    The experimental design employed to assess how the electrical stimuli associated with the Biorock technology may or may not influence elasmobranch behavior. The experimental treatment apparatus is made of one cathode and one anode that are spaced by a distance of 1 m and attached to a 6 V battery.

  • View in gallery

    Graphical representation of the best fit models (A2 and B2) associated with the Caribbean reef shark (Carcharhinus perezi) behavioral frequencies (per trial behaviors/25) at Triangle Rocks, Bimini, Bahamas.

  • View in gallery

    Represents the mean behavioral frequencies (per trial behaviors/25) associated with the teleost species at Triangle Rocks and Alicetown Channel, Bimini, Bahamas. The species encountered were bar jacks (Caranx ruber), Bermuda chubs (Kyphosus sectatrix), remoras (Remora remora), almaco jacks (Seriola rivoliana), mangrove snappers (Lutjanus griseus), and schoolmaster snappers (L. apodus).

  • View in gallery

    Graphical representation of the best fit models (C2 and D2) associated with the bull shark (Carcharhinus leucas) behavioral frequencies (per trial behaviors/25) at Alicetown Channel, Bimini, Bahamas.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 51 51 40
Full Text Views 17 17 16
PDF Downloads 5 5 4
EPUB Downloads 0 0 0