Brain size in Hylarana guentheri seems unaffected by variation in temperature and growth season

in Animal Biology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Brain size varies dramatically between vertebrate species. Two prominent adaptive hypotheses – the Cognitive Buffer Hypothesis (CBH) and the Expensive Brain Hypothesis (EBH) – have been proposed to explain brain size evolution. The CBH assumes that brain size should increase with seasonality, as the cognitive benefits of a larger brain should help overcoming periods of food scarcity via, for example, increased behavioral flexibility. Alternatively, the EBH states that brain size should decrease with seasonality because a smaller brain confers energetic benefits in periods of food scarcity. Here, to test the two adaptive hypotheses by studying the effects of variation in temperature and growth season on variations in overall brain size and the size of specific brain regions (viz. olfactory nerves, olfactory bulbs, telencephalon, optic tectum and cerebellum) among Hylarana guentheri populations. Inconsistent with the predictions of both the EBH and the CBH, variation in temperature and growth season did not exhibit correlations with overall brain size and the size of brain regions across populations. Hence, our data do not provide support for either the EBH or the CBH to explain brain size variation in H. guentheri. Furthermore, brain size variation did not differ between males and females in this species. Our findings suggest that both the variation in temperature and growth season did not shape the variation in brain size in H. guentheri.



AielloL.C.WheelerP. (1995) The expensive-tissue hypothesis – the brain and the digestive system in human and primate evolution. Curr. Anthropol., 36, 199-221.

AllmannJ.Mc LaughlinT.HakeemA. (1993) Brain weight and life-span in primate species. Proc. Natl. Acad. Sci. USA, 90, 118-122.

BurnsJ.G.RoddF.H. (2008) Hastiness, brain size and predation regime affect the performance of wild guppies in a spatial memory task. Anim. Behav., 76, 911-922.

ButlerA.B.HodosW. (2005) Comparative Vertebrate Neuroanatomy: Evolution and Adaptation. 2nd Edition. Wiley-Liss, New York.

ChenC.HuangY.Y.LiaoW.B. (2016a) A comparison of testes size and sperm length between Polypedates megacephalus populations at different altitudes. Herpetol. J., 26, 249-252.

ChenM.HuangY.LiuG.QinF.YangS.XuX. (2016b) Effects of enhanced UV-B radiation on morphology, physiology, biomass, leaf anatomy and ultrastructure in male and female mulberry (Morus alba) saplings. Environ. Exp. Bot., 129, 85-93.

ChrispoE.ChapmanL.J. (2010) Geographic variation in phenotypic plasticity in response to dissolved oxygen in an African cichlid fish. J. Evol. Biol., 23, 2091-2103.

Clutton-BrockT.H.HarveyP.H. (1980) Primates, brains and ecology. J. Zool., 190, 309-323.

DangZ.H.ChenF.J. (2011) Responses of insects to rainfall and drought. Chin. J. App. Entomol., 8, 1161-1169.

DeanerR.O.IslerK.BurkartJ.van SchaikC.P. (2007) Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol., 70, 115-124.

DunbarR.I.ShultzS. (2007) Evolution in the social brain. Science, 317, 1344-1347.

FeiL.YeC.Y. (2001) The Colour Handbook of Amphibians of Sichuan. China Forestry Publishing House, Beijing.

Fonseca-AzevedoK.Herculano-HouzelS. (2012) Metabolic constraing imposes tradeoff between body size and number of brain neurons in human evolution. Proc. Natl. Acad. Sci. USA, 109, 18571-18576.

GondaA.HerczegG.MeriläJ. (2011) Population variation in brain size of nine-spined sticklebacks (Pungitius pungitius) – local adaptation or environmentally induced variation? BMC Evol. Biol., 11, 75.

GondaA.TrokovicN.HerczegG.LaurilaA.MeriläJ. (2010) Predation- and competition-mediated brain plasticity in Rana temporaria tadpoles. J. Evol. Biol., 23, 2300-2308.

HuberR.van StaadenM.J.KaufmanL.S.LiemK.F. (1997) Microhabitat use, trophic patterns, and the evolution of brain structure in African cichlids. Brain Behav. Evol., 50, 167-182.

IslerK.van SchaikC.P. (2009) The expensive brain: a framework for explaining evolutionary changes in brain size. J. Hum. Evol., 57, 392-400.

JacobsL.F. (1996) Sexual selection and the brain. Trends Ecol. Evol., 11, 82-86.

JiangA.ZhongM.J.YangR.L.LiaoW.B.JehleR. (2015) Seasonality and age is positively related to brain size in Andrew’s toad (Bufo andrewsi). Evol. Biol., 42, 339-348.

JinL.MiZ.P.LiaoW.B. (2016a) Altitudinal variation in male reproductive investment in a polyandrous frog species (Hyla gongshanensis jingdongensis). Anim. Biol., 66, 289-303.

JinL.YangS.N.LiaoW.B.LüpoldS. (2016b) Altitude underlies variation in the mating system, somatic condition and investment in reproductive traits in male Asian grass frogs (Fejervarya limnocharis). Behav. Ecol. Sociobiol., 70, 1197-1208.

KöhlerM.Moyà-SolàS. (2004) Reduction of brain and sense organs in the fossil insular bovid Myotragus. Brain Behav. Evol., 63, 125-140.

KotrschalA.BuechelS.D.ZalaS.M.Corral-LopezA.PennD.J.KolmN. (2015) Brain size affects female but not male survival under predation threat. Ecol. Lett., 18, 646-652.

KotrschalA.DeaconA.E.MagurranE.A.KolmN. (2017) Predation pressure shapes brain anatomy in the wild. Evol. Ecol. DOI:10.1007/s10682-017-9901-8.

LefebvreL.WhittleP.LascarisE.FinkelsteinA. (1997) Feeding innovations and forebrain size in birds. Anim. Behav., 53, 549-560.

LiC.LiaoW.B.YangZ.S.ZhouC.Q. (2010) A skeletochronological estimation of age structure in a population of the Guenther’s frog, Hylarana guentheri, from western China. Acta Herpetol., 5, 1-11.

LiaoW.B.LiuW.C.MeriläJ. (2015a) Andrew meets Rensch: sexual size dimorphism and the inverse of Rensch’s rule in Andrew’s toad (Bufo andrewsi). Oecologia, 177, 389-399.

LiaoW.B.LouS.L.ZengY.MeriläJ. (2015b) Evolution of anuran brains: disentangling ecological and phylogenetic sources of variation. J. Evol. Biol., 28, 1986-1996.

LiaoW.B.LouS.L.ZengY.KotrschalA. (2016) Large brains, small guts: the expensive tissue hypothesis supported in anurans. Am. Nat., 188, 693-699.

LiaoW.B.LuX. (2010) Age structure and body size of the Chuanxi tree toad Hyla annectans chuanxiensis from two different elevations (China). Zool. Anz., 248, 255-263.

LlinasR.PrechtW. (1976) Frog Neurobiology: a Handbook. Springer-Verlag, Now York.

LüpoldS.JinL.LiaoW.B. (2017) Population density and structure drive differential investment in pre- and postmating sexual traits in frogs. Evolution, 71, 1686-1699.

MaX.H.ZhongM.J.LongJ.MiZ.P.LiaoW.B. (2016) Evolution in digestive tract in Bufo andrewsi associated with temperature and precipitation. Anim. Biol., 66, 279-288.

MaiC.L.LiaoJ.ZhaoL.LiuS.M.LiaoW.B. (2017) Brain size evolution in the frog Fejervarya limnocharis does neither support the cognitive buffer nor the expensive brain framework hypothesis. J. Zool., 203, 63-72.

MinkJ.W.BlumenschineR.J.AdamsD.B. (1981) Ratio of central nervous-system to body metabolism in vertebrates – its constancy and functional basis. Am. J. Physiol., 241, R203-R212.

MorecroftM.D.BealeyC.E.HowellsE.RennieS.WoiwodI.P. (2002) Effects of drought on contrasting insect and plant species in the UK in the mid-1990s. Global Ecol. Biol., 11, 7-22.

MorrisonC.HeroJ.M. (2003) Geographic variation in life history characteristics of amphibians: a review. J. Anim. Ecol., 72, 270-279.

PollenA.A.DobberfuhlA.P.ScaceJ.IguluM.M.RennS.C.P.ShumwayC.A.HofmannH.A. (2007) Environmental complexity and social organization sculpt the brain in lake Tanganyikan cichlid fish. Brain Behav. Evol., 70, 21-39.

PravosudovV.V.ClaytonN.S. (2002) A test of the adaptive specialization hypothesis: population differences in caching, memory, and the hippocampus in black-capped chickadees (Poecile atricapilla). Behav. Neurosci., 116, 515.

ReaderS.M.HagerY.LalandK.N. (2011) The evolution of primate general and cultural intelligence. Phil. Trans. R. Soc. B, 366, 1017-1027.

RothT.C.LaDageL.D.PravosudovV.V. (2011) Variation in hippocampal morphology along an environmental gradient: controlling for the effects of day length. Proc. R. Soc. B, 278, 2662-2667.

RothT.C.PravosudovV.V. (2009) Hippocampal volumes and neuron numbers increase along a gradient of environmental harshness: a large-scale comparison. Proc. R. Soc. B, 276, 401.

SafiK.DechmannD. (2005) Adaptations of brain regions to habitat complexity: a comparative analysis in bats (Chiroptera). Proc. R. Soc. B, 272, 179-186.

SavageV.M.GilloolyJ.F.BrownJ.H.WestG.B.CharnovE.L. (2004) Effects of body size and temperature on population growth. Am. Nat., 163, 429-441.

SayolF.LefebvreL.SolD. (2016) Relative brain size and its relation with the associative pallium in birds. Brain Behav. Evol., 87, 69-77.

SayolF.MasponsJ.LapiedraO.IwaniukN.A.SzékelyT.SolD. (2017) Environmental variation and the evolution of large brains in birds. Nat. Comm., 7, 13971.

ShiP.J.IkemotoT.GeF. (2011) Development and application of models for describing the effects of temperature on insects’ growth and development. Chin. J. Appl. Entomol., 48, 1149-1160.

ShultzS.FinlaysonL.V. (2010) Large body and small brain and group sizes are associated with predator preferences for mammalian prey. Behav. Ecol., 21, 1073-1079.

ShultzS.BradburyR.B.EvansK.L.GregoryR.D.BlackburnT.M. (2005) Brain size and resource specialization predict long-term population trends in British birds. Proc. R. Soc. B, 272, 2305-2311.

SolD. (2009) Revisiting the cognitive buffer hypothesis for the evolution of large brains. Biol. Lett., 5, 130-133.

SolD.BacherS.ReaderS.M.LefebvreL. (2008) Brain size predicts the success of mammal species introduced into novel environments. Am. Nat., 172, S63-S71.

SolD.DuncanR.BlackburnT.CasseyP.LefebvreL. (2005) Big brains, enhanced cognition, and response of birds to novel environments. Proc. Natl. Acad. Sci. USA, 102, 5460-5465.

SolD.LefebvreL. (2000) Behavioral flexibility predicts invasion success in birds introduced to New Zealand. Oikos, 90, 599-605.

SolD.SzékelyT.LikerA.LefebvreL. (2007) Big-brained birds survive better in nature. Proc. R. Soc. B, 274, 763-769.

StriedterG.F. (2005) Principles of Brain Evolution. Sinauer Associates Inc., Sunderland.

TaylorG.M.NolE.BoireD. (1995) Brain regions and encephalization in anurans: adaptation or stability? Brain Behav. Evol., 45, 96-109.

TomaselloM. (1999) The Cultural Origins of Human Cognition. Harvard University Press, Cambridge, MA.

van der BijlW.ThyseliusM.KotrschalA.KolmN. (2015) Brain size affects the behavioural response to predators in female guppies (Poecilia reticulata). Proc. R. Soc. B, 282, 116-124.

van WoerdenJ.T.van SchaikC.P.IsleK. (2010) Effects of seasonality on brain size evolution: evidence from strepsirrhine primates. Am. Nat., 176, 758-767.

van WoerdenJ.T.WillemsE.P.van SchaikC.P.IslerK. (2011) Large brains buffer energetic effects of seasonal habitats in catarrhine primates. Evolution, 66, 191-199.

VinczeO.VágásiC.I.László PapP.MollerA.P. (2015) Brain regions associated with visual cues are important for bird migration. Biol. Lett., 11, 20150678.

VinczeO. (2016) Light enough to travel or wise enough to stay? Brain size evolution and migratory behavior in birds. Evolution, 70, 2123-2133.

WellsK.D. (2007) The Ecology and Behavior of Amphibians. University of Chicago Press, Chicago, IL.

WellsK.D. (1977) The social behaviour of anuran amphibians. Anim. Behav., 25, 666-693.

WestR.J.D. (2014) The evolution of large brain size in birds is related to social, not genetic, monogamy. Biol. J. Linn. Soc., 111, 668-678.

WuQ.G.LouS.L.ZengY.LiaoW.B. (2016) Spawning location promotes evolution of bulbus olfactorius size in anurans. Herpetol. J., 26, 247-250.

YangS.N.HuangX.F.ZhongM.J.LiaoW.B. (2017) Geographical variation in limb muscle mass of the Andrew’s toad (Bufo andrewsi). Anim. Biol., 67, 17-28.

YopakE.K.LisneyT.J.DarlingtonR.B.CollinS.P.MontgomeryJ.C.FinlayB.L. (2010) A conserved pattern of brain scaling from sharks to primates. Proc. Natl. Acad. Sci. USA, 107, 12946-12951.

ZengY.LouS.L.LiaoW.B.JehleR.KotrschalA. (2016) Sexual selection impacts brain anatomy in frogs and toads. Ecol. Evol., 6, 7070-7079.

ZhangW.L.ZhangY.J. (2010) Modelling of the relationship between the frequency of large-scale outbreak of the beet armyworm, Spodopter aexigua (Lepidoptera: Noctuidae) and the wide-area temperature and rainfall trends in China. Acta Entomol. Sin., 53, 1367-1381.


  • Topographic maps showing the locations of the six populations of Hylarana guentheri in China.

    View in gallery
  • Dorsal, ventral and lateral views of the brain in Hylarana guentheri. Length, width and height measures for each of the five brain parts (olfactory nerves, olfactory bulbs, telencephalon, optic tectum and cerebellum) are shown. See the methods for further details.

    View in gallery
  • The relationship between absolute brain size and SVL among Hylarana guentheri populations (male: black circles and full line; female: white circles and dotted line).

    View in gallery
  • The relationship between relative brain size and confidence interval (CV) in temperature in Hylarana guentheri (male: black circles; female: white circles).

    View in gallery
  • The relationship between relative brain size and growth season length in Hylarana guentheri (male: black circles; female: white circles).

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 12 12 4
Full Text Views 1 1 1
PDF Downloads 0 0 0
EPUB Downloads 0 0 0