Spectral sensitivities of ants – a review

in Animal Biology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

Ants constitute one of the most intriguing animal groups with their advanced social lifes, different life histories and sensory modalities, one of which is vision. Chemosensation dominates all other modalities in the accomplishment of different vital tasks, but vision, varying from total blindness in some species to a relatively well-developed vision providing ants the basis for visually-guided behaviors, is also of importance. Although studies on ant vision mainly focused on recognition of and guidance by landmark cues in artificial and/or natural conditions, spectral sensitivities of their compound eyes and ocelli were also disclosed, but to a lesser extent. In this review, we have tried to present current data on the spectral sensitivities of the different ant species tested so far and the different methodological approaches. The results, as well as the similarities and/or discrepancies of the methodologies applied, were compared. General tendencies in ants’ spectral sensitivities are presented in a comparative manner and the role of opsins and ant ocelli in their spectral sensitivity is discussed in addition to the sensitivity of ants to long wavelengths. Extraocular sensitivity was also shown in some ant species. The advantages and/or disadvantages of a dichromatic and trichromatic color vision system are discussed from an ecological perspective.

Spectral sensitivities of ants – a review

in Animal Biology

Sections

References

AksoyV. (2014) Experience based use of landmark and vector based orientation during homing by the ant formica cunicularia (Hymenoptera: Formicidae). J. Insect Behav.27357-369.

AksoyV. & CamlitepeY. (2012) Behavioural analysis of chromatic and achromatic vision in the ant Formica cunicularia (Hymenoptera: Formicidae). Vis. Res.6728-36.

AksoyV. & CamlitepeY. (2014) A behavioral analysis of achromatic cue perception by the ant Cataglyphis aenescens (Hymenoptera; Formicidae). Turk. Zool. Derg.38199-208.

AndelD. & WehnerR. (2004) Path integration in desert ants, Cataglyphis: how to make a homing ant run away from home. Proc. R. Soc. Lond. B2711485-1489.

AndersonJ.B. & Vander MeerR.K. (1993) Magnetic orientation in the fire ant. Naturwissenschaften80568-570.

ArikawaK. (2003) Spectral organization of the eye of a butterfly Papilio. J. Comp. Physiol. A189791-800.

AutrumH. & von ZwehlV. (1964) Spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. Vergl. Physiol.48357-384.

BanksA.N. & SrygleyR.B. (2003) Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: Formicidae). Ethology109835-846.

BriscoeA.D. & ChittkaL. (2001) The evolution of color vision in insects. Annu. Rev. Entomol.46471-510.

CaineN.G.OsorioD. & MundyN.I. (2010) A foraging advantage for dichromatic marmosets (Callithrix geoffroyi) at low light intensity. Biol. Lett.636-38.

CamlitepeY. & AksoyV. (2010) First evidence of fine color discrimination ability in ants (Hymenoptera, Formicidae). J. Exp. Biol.21372-77.

CamlitepeY. & StradlingD.J. (1995) Wood ant orient to magnetic fields. Proc. R. Soc. Lond. B26137-41.

CamlitepeY.AksoyV.UrenN.YilmazA. & BecenenI. (2005) An experimental analysis on the magnetic field sensitivity of the black-meadow ant Formica pratensis Retzius (Hymenoptera: Formicidae). Acta Biol. Hung.56215-224.

ÇamlıtepeY.AksoyV.ÜrenN.TürkoğluA.K. & YılmazA. (2006) Siyah sırtlı orman karıncası Formica pratensis (Hymenoptera: Formicidae)’de kırmızı dalga boyu duyarlılığı. In: XVIII. Ulusal Biyoloji Kongresi pp. 26-30. Haziran 2006 KuşadasıAydın, Turkey.

ChameronS.SchatzB.Pastergue-RuizI.BeugnonG. & CollettT.S. (1998) The learning of a sequence of visual patterns by the ant Cataglyphis cursor. Proc. Biol. Sci.2652309-2313.

ChiaoC.C.VorobyevM.CroninT.W. & OsorioD. (2000) Spectral tuning of dichromats to natural scenes. Vis. Res.403257-3271.

ChittkaL. & WaserN.M. (1997) Why red flowers are not invisible to bees. Isr. J. Plant Sci.45169-183.

CollettT.S. (1992) Landmark learning and guidance in insects. Phil. Trans. R. Soc. Lond. B337295-303.

CollettT.S. (1996) Insect navigation en route to the goal: multiple strategies for the use of landmarks. J. Exp. Biol.199227-235.

CollettM. & CollettT.S. (2000) How do insects use path integration for their navigation? Biol. Cybern.83245-259.

de IbarraN.H.VorobyevM.BrandtR. & GiurfaM. (2000) Detection of bright and dim colors by honeybees. J. Exp. Biol.2033289-3298.

de IbarraN.H.GiurfaM. & VorobyevM. (2001) Detection of colored patterns by honeybees through chromatic and achromatic cues. J. Comp. Physiol. A187215-224.

DepickereS.FresneauD. & DeneubourgJ.L. (2004) The influence of red light on the aggregation of two castes of the ant, Lasius niger. J. Insect Physiol.50629-635.

DuelliP. & WehnerR. (1973) The spectral sensitivity of polarized light orientation in Cataglyphis bicolor (Formicidae, Hymenoptera). J. Comp. Physiol.8637-53.

DyerA.G. & ChittkaL. (2004a) Fine color discrimination requires differential conditioning in bumblebees. Naturwissenschaften91224-227.

DyerA.G. & ChittkaL. (2004b) Biological significance of distinguishing between similar colors in spectrally variable illumination: bumblebees (Bombus terrestris) as a case study. J. Comp. Physiol. A190105-114.

DyerA.G. & ChittkaL. (2004c) Bumblebees (Bombus terrestris) sacrifice foraging speed to solve difficult color discrimination tasks. J. Comp. Physiol. A190759-763.

FelisbertiF. & VenturaD.F. (1996) Cerebral extraocular photoreceptors in ants. Tissue Cell2825-30.

FelisbertiF.VenturaD.F. & HertelH. (1997) Cerebral extraocular photoreceptors in beetles. Comp. Biochem. Physiol. A1181353-1357.

FentK. & WehnerR. (1985) Ocelli: a celestial compass in the desert ant Cataglyphis. Science228192-194.

FleissnerG. & FleissnerG. (2003) Nonvisual photoreceptors in arthropods with emphasis on their putative role as receptors of natural Zeitgeber stimuli. Chronobiol. Int.20593-616.

GartnerW. (2000) Invertebrate visual pigments. In: D.G. StavengaW.J. DeGrip & E.N. Pugh Jr. (Eds) Handbook of Biological Physics vol. 3 Molecular Mechanisms in Visual Transduction pp. 297-388. ElsevierAmsterdam, The Netherlands.

GenBank http://www.ncbi.nlm.nih.gov/genbank. Accessed 26 November 2016.

GilbertC. (1994) Form and function of stemmata in larvae of holometabolous insects. Annu. Rev. Entomol.39323-349.

GiurfaM. (2004) Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften91228-231.

GiurfaM.VorobyevM.BrandtR.PosnerB. & MenzelR. (1997) Discrimination of colored stimuli by honeybees: alternative use of achromatic and chromatic signals. J. Comp. Physiol. A180235-243.

GoldsmithT.H. & RuckP. (1958) The spectral sensitivities of the dorsal ocelli of cockroaches and honeybees. J. Gen. Physiol411171-1185.

HenzeM.J.DannenhauerK.KohlerM.LabhartT. & GesemannM. (2012) Opsin evolution and expression in arthropod compound eyes and ocelli: insights from the cricket Gryllus bimaculatus. BMC Evol. Biol.12163. DOI:10.1186/1471-2148-12-163.

HerrlingP.L. (1976) Regional distribution of three ultrastructural retinula types in the retina of Cataglyphis bicolor (Formicidae, Hymenoptera). Cell Tissue Res.169247-266.

HölldoblerB. & WilsonE.O. (1990) The Ants. Springer-VerlagNew York, NY, USA.

HorváthG. & VarjúD. (2004) Polarized Light in Animal Vision – Polarization Patterns in Nature. Springer-VerlagHeidelberg, Berlin, Germany.

IchikawaT. (1991) Brain photoreceptors in the pupal and adult butterfly: fate of the lateral ocelli. Zool. Sci. Tokyo8471-476.

JaffeK.IssaS. & Sainz-BorgoC. (2012) Chemical recruitment for foraging in ants (Formicidae) and termites (Isoptera): a revealing comparison. Psyche2012694910. DOI:10.1155/2012.694910.

JanderR. & JanderU. (1998) The light and magnetic compass of the weaver ant, Oecophylla smaragdina (Hymenoptera: Formicidae). Ethology104743-758.

KelberA. (2005) Alternative use of chromatic and achromatic cues in a hawkmoth. Proc. R. Soc. B2732143-2147.

KelberA. & HeniqueU. (1999) Trichromatic color vision in the hummıngbird hawkmoth, Macroglossum stellatarum L. J. Comp. Physiol184535-541.

KelberA. & PfaffM. (1999) True color vision in the orchard butterfly, Papilio aegeus. Naturwissenschaften86221-224.

KelberA.VorobyevM. & OsorioD. (2003a) Animal color vision – behavioural tests and physiological concepts. Biol. Rev. Cambridge Phil. Soc.7881-118.

KelberA.BalkeniusA. & WarrantE.J. (2003b) Color vision in diurnal and nocturnal hawkmoths. Integr. Comp. Biol.43571-579.

KevanP.G.ChittkaL. & DyerA.G. (2001) Limits to the salience of ultraviolet: lessons from color vision in bees and birds. J. Exp. Biol.2042571-2580.

KiepenhauerJ. (1968) Farbunterscheidungsvermigen bei der roten Waldameise. Formica polyctena. Z. Vergl. Physiol57409-411.

KlotzJ.H.van ZandtL.L.ReidB.L. & BennettG.W. (1997) Evidence lacking for magnetic compass orientation in fire ants (Hymenoptera: Formicidae). J. Kansas Entomol. Soc.7064-65.

KohlerM. & WehnerR. (2005) Idiosyncratic route-based memories in desert ants, Melophorus bagoti: how do they interact with path-integration vectors? Neurobiol. Learn. Mem.831-12.

KrappH.G. (2009) Ocelli. Curr. Biol.19435-437.

KretzR. (1979) A behavioural analysis of color vision in the ant Cataglyphis bicolor (Hymenoptera, Formicidae). J. Comp. Physiol1311217-233.

KrúdyA. & LadungaK. (2001) Measuring wavelength discrimination threshold along the entire visible spectrum. Period. Polytech. Mech. Eng.4541-48.

LabhartT. (2000) Polarization-sensitive interneurons in the optic lobe of the desert ant Cataglyphis bicolor. Naturwissenschaften87133-136.

LehrerM. (1994) Spatial vision in the honeybee: the use of different cues in different tasks. Vis. Res.342363-2385.

LiekeE.E. (1981) Graded and discrete receptor potentials in the compound eye of the Australian bulldog-ant (Myrmecia gulosa). Biol. Cybern.40151-156.

LubbockJ. (1882) Ants Bees and Wasps; a Record of Observations on the Habits of the Social Hymenoptera. 3rd Edition. K. PaulLondon, UK.

LubbockJ. (1929) Ants Bees and Wasps. KeganLondon, UK.

LythgoeJ.N. & PartridgeJ.C. (1989) Visual pigments and the acquisition of visual information. J. Exp. Biol.1461-20.

MarakG.E. & WolkenJ.J. (1965) An action spectrum for the fire ant Solenopsis saevissima. Nature2051328-1329.

Martínez-HarmsJ.PalaciosA.G.MárquezN.EstayP.ArroyoM.T.K. & MpodozisJ. (2010) Can red flowers be conspicuous to bees? Bombus dahlbomii and South American temperate forest flowers as a case in point. J. Exp. Biol.213564-571.

MartinoyaC.BlochS.VenturaD.F. & PugliaN.M. (1975) Spectral efficiency as measured by ERG in the ant (Atta sexdens rubropilosa). J. Comp. Physiol.104205-210.

Mazokhin-PorshnyakovG.A. (1974) Investigations on the vision of ants. In: G.A. Horridge (Ed.) The Compound Eye and Vision of Insects pp. 114-120. Clarendon PressOxford, UK.

MelinA.D.FediganL.M.HiramatsuC.SendallC.L. & KawamuraS. (2007) Effects of color vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus. Anim. Behav.73205-214.

MenzelR. (1973) Evidence for color receptors in the Hymenoptera eye obtained from selective adaptation experiments. TIT J. Life Sci.395-100.

MenzelR. (1975) Color receptors in insects. In: G.A. Horridge (Ed.) The Compound Eye and Vision in Insects pp. 121-153. Clarendon PressOxford, UK.

MenzelR. & BackhausW. (1989) Color vision in honeybees: phenomena and physiological mechanisms. In: D.G. Stavenga & R.C. Hardie (Eds) Facets of Vision pp. 281-297. SpringerBerlin, Germany.

MenzelR. & BackhausW. (1991) Color vision in insects. In: P. Gouras (Ed.) Vision and Visual Dysfunction: the Perception of Color pp. 262-288. MacMillanLondon, UK.

MenzelR. & BlakersM. (1976) Color receptors in the bee eye – morphology and spectral sensitivity. J. Comp. Physiol.10811-33.

MenzelR. & KnautR. (1973) Pigment movement during light and chromatic adaptation in the retinula cells of Formica polyctena (Hymenoptera, Formicidae). J. Comp. Physiol.86125-138.

MenzelR. & ShmidaA. (1993) The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a case study. Biol. Rev.6881-120.

MöllerR. (2002) Insects could exploit UV-green contrast for landmark navigation. J. Theor. Biol.214619-631.

MorgenM.J.AdamA. & MollonJ.D. (1992) Dichromats detect colorcamouflaged objects that are not detected by trichromats. Proc. R. Soc. Lond. B Biol. Sci.248291-295.

MoteM.I. & WehnerR. (1980) Functional characteristics of photoreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. J. Comp. Physiol.13763-71.

MurtaughM.P. & DelingerD.L. (1985) Physiological regulation of long-term oviposition in the house cricket, Acheta domesticus. J. Insect Physiol.31611-617.

NorlanderR.H. & EdwardsJ.S. (1969) Postembryonic brain development in the Monarch butterfly, Danaus plexippus plexippus L. II: The optic lobes. Wilhelm Roux Arch.163197-220.

OgawaY.FalkowskiM.NarendraA.ZeilJ. & HemmiJ.M. (2015) Three spectrally distinct photoreceptors in diurnal and nocturnal Australian ants. Proc. R. Soc. Lond. B Biol. Sci.28220150673. DOI:10.1098/rspb.2015.0673.

PeitschD.FeitzA.HertelH.de SouzaJ.VenturaD.F. & MenzelR. (1992) The spectral input systems of hymenopteran insects and their receptor-based color vision. J. Comp. Physiol. A17023-40.

PetrovI.Z. (1993) Some remarks on the foraging strategy in Cataglyphis aenescens Nyl. (Hymenoptera, Formicidae). Tiscia2723-28.

PoppM.P.GrisshammerR.HargraveP.A. & SmithW. (1996) Ant opsins: sequences from the Saharan silver ant and the carpenter ant. Invertebr. Neurosci1323-329.

ReisenmanC.E. & GiurfaM. (2008) Chromatic and achromatic stimulus discrimination of long wavelength (red) visual stimuli by the honeybee Apis mellifera. Arthropod Plant Interact.2137-146.

RiverosA.J. & SrygleyR.B. (2008) Do leaf cutter ants, Atta colombica, orient their path-integrated home vector with a magnetic compass? Anim. Behav.751273-1281.

RonacherB. (2008) Path integration as the basic navigation mechanism of the desert ant Cataglyphis fortis (Forel, 1902) (Hymenoptera: Formicidae). Myrmecol. News1153-62.

RosselS. & WehnerR. (1984) Celestial orientation in bees: the use of spectral cues. J. Comp. Physiol. A155605-613.

RothH. & MenzelR. (1972) ERG of Formica polyctena and selective adaptation. In: R. Wehner (Ed.) Information Procesing in the Visual Systems of Arthropods pp 177-181. SpringerBerlin, Germany.

SaitoA.MikamiA.KawamuraS.UenoY.HiramatsuC.WidayatiK.A.SuryobrotoB.TeramotoM.MoriY.NaganoK.FujitaK.KuroshimaH. & HasegawaT. (2005) Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in non-human primates. Am. J. Primatol.67425-436.

SandovalE.L.WajnbergE.EsquivelD.M.S.Lins de BarrosD.H. & Acosta-AvalosD. (2012) Magnetic orientation in Solenopsis sp. ants. J. Insect Behav.25612-619.

SantschiF. (1911) Observations et remarques critiques sur le mécanisme de l’orientation chez les fourmis. Rev. Suisse Zool.19305-338.

SchwarzS.AlbertL.WystrachA. & ChengK. (2011) Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti. J. Exp. Biol.214901-906.

SeifertP.SmolaU. & SchinkoI. (1987) Internal extraocular photoreceptors in a dipteran insect. Tissue Cell19111-118.

SmithW.C.AyersD.PoppM.P. & HargraveP.A. (1997) Short wavelength-sensitive opsins from the Saharan silver and carpenter ants. Invertebr. Neurosci.349-56.

SpaetheJ. & AlbertS. (2013) Are ants di- or trichromats? New insights from genome analysis and opsin mRNA expression studies. Front. Physiol. Conference Abstract: International Conference on Invertebrate Vision. DOI:10.3389/conf.fphys.2013.25.00111.

StavengaD.G. & ArikawaK. (2006) Evolution of color and vision of butterflies. Arthropod Struct. Dev.35307-318.

StenglM. & HombergU. (1994) Pigment-dispersing hormoneimmunoreactive neurons in the cockroach Leucophaeu maderae share properties with circadian pacemaker neurons. J. Comp. Physiol. A175201-213.

TrumanJ.W. (1976) Extraretinal photoreception in insects. Photophysiology23215-225.

TsunekiK. (1953) On color vision in two species of ants, with special emphasis on their relative sensitivity to various monochromatic lights. Jpn. J. Zool.11187-221.

TurnerC.H. (1907) The homing of ants: an experimental study of ant behaviour. J. Comp. Neurol. Psychol.17367-434.

VanhoutteK.EggenB.JanssenJ. & StavengaD. (2002) Opsin cDNA sequences of a UV and green rhodopsin of the satyrine butterfly Bicyclus anynana. Insect Biochem. Mol. Biol.321383-1390.

von FrischK. (1914) Der Farbensinn und Formensin der Biene. Zool. Jahrb. Abt. Allg. Zool. Physiol.351-188.

VorobyevM. & BrandtR. (1997) How do insect pollinators discriminate colors? Isr. J. Plant Sci.45103-113.

VossC. (1967) Uber das Formensehen der roten Waldameise (Formica rufa Gruppe). Z. Vergl. Physiol.55225-254.

WakakuwaM.KurasawaM.GiurfaM. & ArikawaK. (2005) Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften92464-467.

WakakuwaM.StawengaD.S.KurasawaM. & ArikawaK. (2004) A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. J. Exp. Biol.2072803-2810.

WehnerR. (1984) Astronavigation in insects. Annu. Rev. Entomol.29277-298.

WehnerR. & DuelliP. (1971) The spatial orientation of desert ants, Cataglyphis bicolor, before sunrise and after sunset. Experientia271364-1366.

WehnerR. & ToggweilerF. (1972) Verhaltensphysiologischer Nachweis des Farbensehens bei Cataglyphis bicolor (Formicidae, Hymenoptera). J. Comp. Physiol.77239-255.

WolkenJ.J. (1988) Photobehavior of marine invertebrates: extraocular photoreception. Comp. Biochem. Physiol.91145-149.

YanoviakS.P. & DudleyR. (2006) The role of visual cues in directed aerial descent of Cephalotes atratus workers (Hymenoptera: Formicidae). J. Exp. Biol.2091777-1783.

YilmazA.LindenbergA.AlbertS. & GrohC. (2016) Age-related and light-induced plasticity in opsin gene expression and in primary and secondary visual centers of the nectar-feeding ant Camponotus rufipes. Dev. Neurobiol.761041-1057.

YilmazA.DyerA.G.RösslerW. & SpaetheJ. (2017) Innate color preference, individual learning and memory retention in the ant Camponotus blandus. J. Exp. Biol.2203315-3326.

ZaccardiG.KelberA.Sison-MangusM.P. & BriscoeA.D. (2006) Color discrimination in the red range with only one long-wavelength sensitive opsin. J. Exp. Biol.2091944-1955.

ZeilJ.RibiW.A. & NarendraA. (2014) Polarisation vision in ants, bees and wasps. In: G. Horváth (Ed.) Polarized Light and Polarization Vision in Animal Sciences pp. 41-60. SpringerBerlin, Germany.

Figures

  • View in gallery

    Spectral sensitivities of ants and the method used, presented chronologically per species. Opsin-based studies whose details are given further in the text were not included in the table.

  • View in gallery

    (Continued.)

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 92 92 19
Full Text Views 115 115 88
PDF Downloads 6 6 1
EPUB Downloads 5 5 0