Latitudinal variation in body size in Fejervarya limnocharis supports the inverse of Bergmann’s rule

in Animal Biology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?



Bergmann’s rule states that within a species of endotherms smaller individuals are found in warmer conditions, which is consistent for nearly all endotherms, while in ectotherms body size patterns are less consistent. As ectothermic vertebrates, the morphology of amphibians is likely impacted by climatic conditions. Here, we examined latitudinal variation in body size in the ranid frog, Fejervarya limnocharis, based on literature and our own data on mean body size of 3637 individuals from 50 populations and average age of 2873 individuals from 40 populations in China. The results showed that body size was positively correlated with environmental temperature, but not with precipitation. Body size was negatively correlated with latitude among populations in this species, which supported the inverse of Bergmann’s rule. Our findings suggest that a larger body size in low-latitude populations is associated with a longer growing season related to the higher environmental temperature.

  • Supplementary data

Latitudinal variation in body size in Fejervarya limnocharis supports the inverse of Bergmann’s rule

in Animal Biology



ArnettA.E. & GotelliN.J. (1999) Geographic variation in life-history traits of the ant lion (Myrmeleon immaculatus): evolutionary implications of Bergmann’s rule. Evolution531180-1188.

AshtonK.G. (2002) Do amphibians follow Bergmann’s rule? Can. J. Zool.80708-716.

AshtonK.G. & FeldmanC.R. (2003) Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it. Evolution571151-1163.

AshtonK.G.TracyM.C. & de QueirozA. (2000) Is Bergmann’s rule valid for mammals? Am. Nat.156390-415.

AtkinsonD. & SiblyR.M. (1997) Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol. Evol.12235-239.

BeckE.KottkeI.BendixJ.MakeschinF. & MosandlR. (2008) Gradients in a tropical mountain ecosystem – a synthesis. In: E. BeckI. KottkeJ. BendixF. Makeschin & R. Mosandl (Eds) Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies (Analysis and Synthesis)vol. 198 pp. 451-463. Springer VerlagBerlin, Germany.

BelkC.M. & HoustonD.D. (2002) Bergmann’s rule in ectotherms: a test using freshwater fishes. Am. Nat.160803-808.

BergmannC. (1847) Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe. In: Göttinger Studienvol. 3 pp. 595-708. Vandenhoeck & RuprechtGöttingen, Germany.

BernardoJ. & Reagan-WallinN.L. (2002) Plethodontid salamanders do not conform to “general rules” for ectotherm life histories: insights from allocation models about why simple models do not make accurate predictions. Oikos97398-414.

BervenK.A. (1982) The genetic basis of altitudinal variation in the wood frog, Rana sylvatica. II. An experimental analysis of larval development. Oecologia52360-369.

BervenK.A.GillD.E. & Smith-GillS.J. (1979) Counter-gradient selection in the green frog, Rana clamitans. Evolution33609-623.

BlackburnT.M. & HawkinsB.A. (2004) Bergmann’s rule and the mammal fauna of northern North America. Ecography27715-724.

BoyceM.S. (1979) Seasonality and patterns of natural selection for life histories. Am. Nat.114569-583.

BrownJ.H.MarquetP.A. & TaperM.L. (1993) Evolution of body size: consequences of an energetic definition of fitness. Am. Nat.142573-584.

ChenX.H.YangJ.QiaoL.ZhangL.X. & LuX. (2011) Reproductive ecology of the stream-dwelling frog Feirana taihangnicus in central China. Herpetol. J.21135-140.

CvetkovićD.TomaševićN.FicetolaG.F.Crnobrnja-IsailovićJ. & MiaudC. (2009) Bergmann’s rule in amphibians: combining demographic and ecological parameters to explain body size variation among populations in the common toad Bufo bufo. J. Zool. Syst. Evol. Res.47171-180.

DziminskiM.A.VercoeP.E. & RobertsJ.D. (2009) Variable offspring provisioning and fitness: a direct test in the field. Funct. Ecol.23164-171.

EatonB.R.PaszkowskiC.A.KristensenK. & HiltzM. (2005) Life-history variation among populations of Canadian toads in Alberta, Canada. Can. J. Zool.831421-1430.

FeiL. & YeC.Y. (2001) The Colour Handbook of Amphibians of Sichuan. China Forestry Publishing HouseBeijing, China.

FeldmanA. & MeiriS. (2014) Australian snakes do not follow Bergmann’s rule. Evol. Biol.41327-335.

FicetolaG.F. & MaioranoL. (2016) Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia181683-693.

GeistV. (1987) Bergmann’s rule is invalid. Can. J. Zool.651035-1038.

GuJ.LiD.Y.LuoY.YingS.B.ZhangL.Y.ShiQ.M.ChenJ.ZhangS.P.ZhouZ.M. & LiaoW.B. (2017) Brain size in Hylarana guentheri seems unaffected by variation in temperature and growth season. Anim. Biol.67209-225.

HuangY.ZhuH.Q.LiaoY.M.JinL. & LiaoW.B. (2013) Age structure, size and growth of a high-altitude Bell toad in subtropical montane in southwestern China. Herpetol. J.23229-232.

JamesF.C. (1970) Geographic size variation in birds and its relationship to climate. Ecology51365-390.

JinL.YangS.N.LiaoW.B. & LüpoldS. (2016) Altitude underlies variation in the mating system, somatic condition, and investment in reproductive traits in male Asian grass frogs (Fejervarya limnocharis). Behav. Ecol. Sociobiol.701197-1208.

KaplanH.R. & KingG.E. (1997) Egg size is a developmentally plastic trait: evidence from long term studies in the frog Bombina orientalis. Herpetologica53149-165.

KearneyM.ShineR. & PorterW.P. (2009) The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc. Natl Acad. Sci. USA1063835-3840.

KubotaU.LoyolaR.D.AlmeidaA.M.CarvalhoD.A. & LewinsohnT.M. (2007) Body size and host range co-determine the altitudinal distribution of Neotropical tephritid flies. Global. Ecol. Biogeogr.16632-639.

LaugenA.T.LaurilaA.RäsänenK. & MeriläJ. (2003) Latitudinal countergradient variation in the common frog (Rana temporaria) developmental rates – evidence for local adaptation. J. Evol. Biol.16996-1005.

LaugenA.T.LaurilaA.JönssonK.I.SödermanF. & MeriläJ. (2005) Do common frogs (Rana temporaria) follow Bergmann’s rule? Evol. Ecol. Res.7717-731.

LaurilaA.PakkasmaaS. & MeriäJ. (2001) Influence of seasonal time constraints on growth and development of common frog tadpoles: a photoperiod experiment. Oikos95451-460.

LiY.M.XuF.GuoZ.W.LiuX.JinC.N.WangY.P. & WangS.P. (2011) Reduced predator species richness drives the body gigantism of a frog species on the Zhoushan Archipelago in China. J. Anim. Ecol.80171-172.

LiS.T.WuX.LiD.Y.LouS.L.MiZ.P. & LiaoW.B. (2013) Body size variation of odorous frog (Odorrana grahami) across altitudinal gradients. Herpetol. J.23187-192.

LiaoW.B. (2013) Evolution of sexual size dimorphism in a frog obeys the inverse of Rensch’s rule. Evol. Biol.40493-499.

LiaoW.B. & LuX. (2010) Age structure and body size of the Chuanxi tree toad Hyla annectans chuanxiensis from two different elevations (China). Zool. Anz.248255-263.

LiaoW.B. & LuX. (2012) Adult body size=f(initial size+growth rate×age): explaining the proximate cause of Bergman’s cline in a toad along altitudinal gradients. Evol. Ecol.26579-590. DOI:10.1007/s10682-011-9501-y.

LiaoW.B.ZhouC.Q.YangZ.S.HuJ.C. & LuX. (2010) Age, size and growth in two populations of the dark-spotted frog Rana nigromaculata at different altitudes in southwestern China. Herpetol. J.2077-82.

LiaoW.B.LuX.ShenY.W. & HuJ.C. (2011) Age structure and body size of two populations of the rice frog Rana limnocharis from different altitudes. Ital. J. Zool.78215-228.

LiaoW.B.LiuW.C. & MeriläJ. (2015) Andrew meets Rensch: sexual size dimorphism and the inverse of Rensch’s rule in Andrew’s toad (Bufo andrewsi). Oecologia177389-399.

LiaoW.B.LuoY.LouS.L.LuD. & JehleR. (2016a) Geographic variation in life-history traits: growth season affects age structure, egg size and clutch size in Andrew’s toad (Bufo andrewsi). Front. Zool.136. DOI:10.1186/s12983-016-0138-0.

LiaoW.B.LouS.L.ZengY. & KotrschalA. (2016b) Large brains, small guts: the expensive tissue hypothesis supported in anurans. Am. Nat.188693-699.

LiaoW.B.HuangY.ZengY.ZhongM.J.LuoY. & LüpoldS. (2018) Ejaculate evolution in external fertilizers: influenced by sperm competition or sperm limitation. Evolution724-17.

LindseyC.C. (1966) Body sizes of poikilotherm vertebrates at different latitudes. Evolution20456-465.

LiuY.H.LiaoW.B.ZhouC.Q. & MiZ.P. (2012) Altitudinal variation in body size in the rice frog (Rana limnocharis) in southwestern China. Acta Herpetol.757-68.

LuX.LiB. & LiangJ.J. (2006) Comparative demography of a temperate anuran, Rana chensinensis, along a relatively fine altitudinal gradient. Can. J. Zool.841789-1795.

LuoY.ZhongM.J.HuangY.LiF.LiaoW.B. & KotrschalA. (2017) Seasonality and brain size are negatively associated in frogs: evidence for the expensive brain framework. Sci. Rep.716629. DOI:10.1038/s41598-017-16921-1.

LüpoldS.JinL. & LiaoW.B. (2017) Population density and structure drive differential investment in pre- and postmating sexual traits in frogs. Evolution711686-1699.

MaX.Y.LuX. & MeriläJ. (2009a) Altitudinal decline of body size in a Tibetan frog Nanorana parkeri. J. Zool.279364-371.

MaX.Y.TongL.N. & LuX. (2009b) Variation of body size, age structure and growth of a temperate frog, Rana chensinensis, over an altitudinal gradient in northern China. Amphib. Reptil.30111-117.

MaiC.L.LiaoJ.ZhaoL.LiuS.M. & LiaoW.B. (2017) Brain size evolution in the frog Fejervarya limnocharis does neither support the cognitive buffer nor the expensive brain framework hypothesis. J. Zool.30263-72.

MatthewsR.K. & MiaudC. (2007) A skeletochronological study of the age structure, growth, and longevity of the mountain yellow-legged frog, Rana muscosa, in the sierra Nevada, California. Copeia4986-993.

McGillB.J.EnquistB.J.WeiherE. & WestobyM. (2006) Rebuilding community ecology from functional traits. Trends Ecol. Evol.21178-185.

McNabB.K. (1971) On the ecological significance of Bergmann’s rule. Ecology52845-854.

MeiriS. & DayanT. (2003) On the validity of Bergmann’s rule. J. Biogeogr.30331-351.

MeiriS. & ThomasG.H. (2007) The geography of body size-challenges of the interspecific approach. Glob. Ecol. Biogeogr.16689-693.

MeiriS.MeijaardE.WichS.GrovesC. & HelgenK. (2008) Mammals of Borneo – small size on a large island. J. Biogeogr.351087-1094.

MorrisonC. & HeroJ.M. (2003) Geographic variation in life-history characteristics of amphibians: a review. J. Anim. Ecol.72270-279.

Olalla-TarragaM.A.RodriguezM.A. & HawkinsB.A. (2006) Broad-scale patterns of body size in squamate reptiles of Europe and North America. J. Biogeogr.33781-793.

OlsonV.A.DaviesR.G.OrmeC.D.ThomasG.H.MeiriS.BlackburnT.M.GastonK.J.OwensI.P. & BennettP.M. (2009) Global biogeography and ecology of body size in birds. Ecol. Lett.12249-259.

ØrstedM.RohdeP.D.HoffmannA.A.SørensenP. & KristensenT.N. (2018) Environmental variation partitioned into separate heritable components. Evolution72136-152.

RollinsonN. & RoweL. (2018) Temperature-dependent oxygen limitation and the rise of Bergmann’s rule in species with aquatic respiration. Evolution. DOI:10.1111/evo.13458.

Schmidt-NielsenK. (1984) Scaling: why Is Animal Size so Important? Cambridge University PressNew York, NY, USA.

ShelomiR. (2012) Where are we now? Bergmann’s rule sensu lato in insects. Am. Nat.180511-519.

ShiL.Q.ZhangX.Q. & MaX.M. (2011) Ontogeny in sexual dimorphism and female reproduction of rice frog Fejervarya limnocharis. Chin. J. Ecol.30717-723.

ShouH.L.DuW.G. & ShuL. (2005) Sexual dimorphism and fecundity in the gold-stripe pond frog (Pelophylax plancyi) and the terrestrial frog (Fejervarya limnocharis). Acta Ecol. Sin.25664-668.

SinschU.MarangoniF.OromiN.LeskovarC.SanuyD. & TejedoM. (2010) Proximate mechanisms determining size variability in natterjack toads. Zoology281272-281.

TurbillC.BieberC. & RufT. (2011) Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc. R. Soc. B.2783355-3363.

UlrichW. & FieraC. (2010) Environmental correlates of body size distributions of European springtails (Hexapoda: Collembola). Glob. Ecol. Biogeogr.19905-915.

Von BertalanffyL. (1957) Quantitative laws in metabolism and growth. Q. Rev. Biol.32217-231.

WellsK.D. (2007) The Ecology and Behavior of Amphibians. University of Chicago PressChicago, IL, USA.

WuZ.J.LiY.M. & MurrayB. (2006) Insular shifts in body size of rice frogs in the Zhoushan Archipelago. J. Anim. Ecol.751071-1080.

XiongH.L.LiuY.QinL.J. & XiongZ.B. (2010) Breeding ecology of Fejervarya multistriata in Maolan Region. Sichuan J. Zool.29353-359.

Yom-TovY. (2001) Global warming and body mass decline in Israeli passerine birds. Proc. R. Soc. B.268947-952.

Yom-TovY. & GeffenE. (2011) Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls. Biol. Rev.86531-541.


  • View in gallery

    Topographic map showing the study sites in the Zhoushan Archipelago, Hainan, and on the mainland in China where the 50 populations were sampled. Gray circles indicate populations sampled.

  • View in gallery

    Location, elevation, sample size (males/females), mean body size (SVL) in males and females of 50 populations and age of 40 populations and references to published papers by Xiong et al. (2010), Li et al. (2011), Liao et al. (2011), Shi et al. (2011), Liu et al. (2012), and Liao (2013).

  • View in gallery


  • View in gallery

    The relationship between body size and temperature in Fejervarya limnocharis within each sex (female: black circles and solid line; male: white circles and dotted line) among 50 populations.

  • View in gallery

    The relationship between body size and age in Fejervarya limnocharis within each sex (female: black circles and solid line; male: white circles and dotted line) among 40 populations.

  • View in gallery

    The relationship between body size and latitude in Fejervarya limnocharis within each sex (female: black circles and solid line; male: white circles and dotted line) in island (A) and mainland (B) populations.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 40 40 19
Full Text Views 93 93 16
PDF Downloads 11 11 5
EPUB Downloads 27 27 9