No evidence for the expensive-tissue hypothesis in Fejervarya limnocharis

in Animal Biology
No Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

Because the brain is one of the energetically most expensive organs of animals, trade-offs have been hypothesized to exert constraints on brain size evolution. The expensive-tissue hypothesis predicts that the cost of a large brain should be compensated by decreasing size of other metabolically costly tissues, such as the gut. Here, we analyzed the relationships between relative brain size and the size of other metabolically costly tissues (i.e., gut, heart, lung, kidney, liver, spleen or limb muscles) among four Fejervarya limnocharis populations to test the predictions of the expensive-tissue hypothesis. We did not find that relative brain size was negatively correlated with relative gut length after controlling for body size, which was inconsistent with the prediction of the expensive-tissue hypothesis. We also did not find negative correlations between relative brain mass and relative size of the other energetically expensive organs. Our findings suggest that the cost of large brains in F. limnocharis cannot be compensated by decreasing size in other metabolically costly tissues.

No evidence for the expensive-tissue hypothesis in Fejervarya limnocharis

in Animal Biology

Sections

References

  • AielloL.C. & WheelerP. (1995) The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr. Anthropol.36199-221.

  • AllmanJ. (2000) Evolving Brains. Scientific American LibraryNew York, NY, USA.

  • ChenC.HuangY.Y. & LiaoW.B. (2016a) A comparison of testes size and sperm length between Polypedates megacephalus populations at different altitudes. Herpetol. J.26249-252.

  • ChenM.HuangY.LiuG.QinF.YangS. & XuX. (2016b) Effects of enhanced UV-B radiation on morphology, physiology, biomass, leaf anatomy and ultrastructure in male and female mulberry (Morus alba) saplings. Environ. Exp. Bot.12985-93.

  • GlazierD.S. (1999) Trade-offs between reproductive and somatic (storage) investments in animals: a comparative test of the Van Noordwijk and De Jong model. Evol. Ecol.13539-555.

  • GondaM.A.HerczegG. & MeriläJ. (2013) Evolutionary ecology of intraspecific brain size variation: a review. Ecol. Evol.32751-2764.

  • GuJ.LiD.Y.LuoY.YingS.B.ZhangL.Y.ShiQ.M.ChenJ.ZhangS.P.ZhouZ.M. & LiaoW.B. (2017) Brain size in Hylarana guentheri seems unaffected by variation in temperature and growth season. Anim. Biol.67209-225.

  • HanH.Y.LiS.GanX.H. & ZhangX.M. (2017) Phenotypic diversity in naturnal populations of an endangered plant Tetracentron sinense. Bot. Sci.95283-294.

  • IslerK. & van SchaikC. (2006) Costs of encephalization: the energy trade-off hypothesis tested on birds. J. Hum. Evol.51228-243.

  • IslerK. & van SchaikC. (2009) The expensive brain: a framework for explaining evolutionary changes in brain size. J. Hum. Evol.57392-400.

  • JiangA.ZhongM.J.YangR.L.LiaoW.B. & JehleR. (2015) Seasonality and age is positively related to brain size in Andrew’s toad (Bufo andrewsi). Evol. Biol.42339-348.

  • JinL.LiuW.C.LiY.H.ZengY. & LiaoW.B. (2015) Evidence for the expensive-tissue hypothesis in the Omei wood frog (Rana omeimontis). Herpetol. J.25127-130.

  • JinL.YangS.N.LiaoW.B. & LüpoldS. (2016) Altitude underlies variation in the mating system, somatic condition and investment in reproductive traits in male Asian grass frogs (Fejervarya limnocharis). Behav. Ecol. Sociobiol.701197-1208.

  • KaufmanJ.A.HladikC.M. & PasquetP. (2003) On the expensive tissue hypothesis: independent support from highly encephalized fish. Curr. Anthropol.44705-707.

  • KotrschalA.RogellB.BundsenA.SvenssonB.ZajitschekS.BrannstromI.ImmlerS.MaklakovA.A. & KolmN. (2013) Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol.23168-171.

  • KotrschalA.ZengH.L.van der Bijl W.Öhman-MägiC.KotrschalK.PelckmansK. & Kolm N. (2017) Evolution of brain region volumes during artificial selection for relative brain size. Evolution712942-2951.

  • LemaîtreJ.F.RammS.A.BartonR.A. & StockleyP. (2009) Sperm competition and brain size evolution in mammals. J. Evol. Biol.222215-2221.

  • LiS.T.WuX.LiD.Y.LouS.L.MiZ.P. & LiaoW.B. (2013) Body size variation of odorous frog (Odorrana grahami) across altitudinal gradients. Herpetol. J.23187-192.

  • LiaoW.B. & LuX. (2010) Age structure and body size of the Chuanxi tree frog Hyla annectans chuanxiensis from two different elevations in Sichuan (China). Zool. Anz.248255-263.

  • LiaoW.B.LuX.ShenY.W. & HuJ.C. (2011) Age structure and body size of two populations of the rice frog Rana limnocharis from different altitudes. Ital. J. Zool.78215-221.

  • LiaoW.B.LuX. & JehleR. (2014) Altitudinal variation in reproductive investment and trade-off between egg size and clutch size in the Andrew’s toad (Bufo andrewsi). J. Zool.29384-91.

  • LiaoW.B.LouS.L.ZengY. & MeriläJ. (2015a) Evolution of anuran brains: disentangling ecological and phylogenetic sources of variation. J. Evol. Biol.281986-1996.

  • LiaoW.B.LiuW.C. & MeriläJ. (2015b) Andrew meets Rensch: sexual size dimorphism and the inverse of Rensch’s rule in Andrew’s toad (Bufo andrewsi). Oecologia177389-399.

  • LiaoW.B.LouS.L.ZengY. & KotrschalA. (2016a) Large brains, small guts: the expensive tissue hypothesis supported in anurans. Am. Nat.188693-700.

  • LiaoW.B.LuoY.LouS.L. & JehleR. (2016b) Geographic variation in life-history traits: growth season affects age structure, egg size and clutch size in Andrew’s toad (Bufo andrewsi). Front. Zool.136.

  • LiaoW.B.HuangY.ZengY.ZhongM.J.LuoY. & LüpoldS. (2018) Ejaculate evolution in external fertilizers: influenced by sperm competition or sperm limitation? Evolution724-17.

  • LiuJ.ZhouC.Q. & LiaoW.B. (2014) Evidence for neither the compensation hypothesis nor the expensive-tissue hypothesis in Carassius auratus. Anim. Biol.64177-187.

  • LiuQ.FengH.JinL.MiZ.P.ZhouZ.M. & LiaoW.B. (in press) Latitudinal variation in body size in Fejervarya limnocharis supports the inverse of Bergmann’s rule. Anim. Biol. DOI:10.1163/15707563-17000129.

  • LiuY.H.LiaoW.B.ZhouC.Q. & MiZ.P. (2012) Altitudinal variation in body size in the rice frog (Rana limnocharis) in southwestern China. Acta Herpetol.757-68.

  • LouS.L.LiY.H.JinL.MiZ.P.LiuW.C. & Liao W.B. (2013) Altitudinal variation in digestive tract length in Yunnan pond frog (Pelophylax pleuraden). Asian Herpetol. Res.4263-267.

  • LuoY.ZhongM.J.HuangY.LiF.LiaoW.B. & KotrschalA. (2017) Seasonality and brain size are negatively associated in frogs: evidence for the expensive brain framework. Sci. Rep.716629.

  • LüpoldS.JinL. & LiaoW.B. (2017) Population density and structure drive differential investment in pre- and postmating sexual traits in frogs. Evolution711686-1699.

  • MaX.H.ZhongM.J.JinL.MiZ.P. & LiaoW.B. (2016) Digestive tract adaptation associated with temperature and precipitation in male Bufo andrewsi. Anim. Biol.66279-288.

  • MaiC.L.LiaoJ.ZhaoL.LiuS.M. & LiaoW.B. (2017a) Brain size evolution in the frog Fejervarya limnocharis does neither support the cognitive buffer nor the expensive brain framework hypothesis. J. Zool.30263-72.

  • MaiC.L.LiuY.H.JinL.MiZ.P. & LiaoW.B. (2017b) Altitudinal variation in somatic condition and investment in reproductive traits in male Yunnan pond frog (Pelophylax pleuraden). Zool. Anz.266189-195.

  • MinkJ.W.BlumenschineR.J. & AdamsD.B. (1981) Ratio of central nervous-system to body metabolism in vertebrates – its constancy and functional basis. Am. J. Physiol.241203-212.

  • MontogomeryD.C. & PeckE. (1992) An Introduction to Linear Regression Analysis. John Wiley & SonsNew York, NY, USA.

  • NavarreteA.van SchaikC.P. & IslerK. (2011) Energetics and the evolution of human brain size. Nature48091-93.

  • NayaD.E. & BozinovicF. (2004) Digestive phenotypic flexibility in post-metamorphic amphibians: studies on a model organism. Biol. Rev.37365-370.

  • NayaD.E.VelosoC. & BozinovicF. (2009) Gut size variation among Bufo spinulosus populations along an altitudinal (and dietary) gradient. Ann. Zool. Fenn.4616-20.

  • PitnickS.JonesK.E. & WilkinsonG.S. (2006) Mating system and brain size in bats. Proc. R. Soc. B273719-724.

  • PontzerH.BrownM.H.RaichlenD.A.DunsworthH.HareB.WalkerK.LukeA.DugasL.R.Durazo-ArvizuR.SchoellerD.Plange-RhuleJ.BovetP.ForresterT.E.LambertE.V.ThompsonM.E.ShumakerR.W. & RossS.R. (2016) Metabolic acceleration and the evolution of human brain size and life history. Nature533390-392.

  • StriedterG.F. (2005) Principles of Brain Evolution. Sinauer AssociatesSunderland, MA, USA.

  • SukhumK.V.FreilerM.K.WangR. & CarlsonB.A. (2016) The costs of a big brain: extreme encephalization results in higher energetic demand and reduced hypoxia tolerance in weakly electric African fishes. Proc. R. Soc. B28320162157.

  • TangT.LuoY.HuangC.H.LiaoW.B. & HuangW.C. (in press) Variation in somatic condition and testis mass in Feirana quadranus along an altitudinal gradient. Anim. Biol. DOI:10.1163/15707563-17000142.

  • TsuboiM.Husby A.KotrschalA.HaywardA.BuechelS.D.ZidarJ.LøvlieH. & KolmN. (2015) Comparative support for the expensive tissue hypothesis: big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids. Evolution69190-200.

  • TsuboiM.ShojiJ.SogabeA.AhnesjöI. & KolmN. (2016) Within species support for the expensive tissue hypothesis: a negative association between brain size and visceral fat storage in females of the Pacific seaweed pipefish. Ecol. Evol.6647-655.

  • van NoordwijkA.J. & de JongG. (1986) Acquisition and allocation of resources – their influence on variation in life-history tactics. Am. Nat.128137-142.

  • WangW.Y.ZhangR.YinQ.X.ZhangS.P.LiW.Q.LiD.Y. & MiZ.P. (2017) Digestive tract length is positively correlated with altitude across Fejervarya limnocharis populations. Anim. Biol.67227-237.

  • WarrenD.L. & Iglesias T.L. (2012) No evidence for the ‘expensive-tissue hypothesis’ from an intraspecific study in a highly variable species. J. Evol. Biol.251226-1231.

  • WuQ.G.LouS.L.ZengY. & LiaoW.B. (2016) Spawning location promotes evolution of bulbus olfactorius size in anurans. Herpetol. J.26247-250.

  • YangS.N.HuangX.F.ZhongM.J. & LiaoW.B. (2017) Geographical variation in limb muscle mass of the Andrew’s toad (Bufo andrewsi). Anim. Biol.6717-28.

  • YuX.ZhongM.J.LiD.Y.JinL.LiaoW.B. & KotrschalA. (in press) Large-brained frogs mature later and live longer. Evolution. DOI:10.1111/evo.13478.

  • ZengY.LouS.L.LiaoW.B.JehleR. & KotrschalA. (2016) Sexual selection impacts brain anatomy in frogs and toads. Ecol Evol.67070-7079.

  • ZhaoC.L.LuoY.ZhongM.J.XieF.JiangJ.P.LiD.Y. & LiaoW.B. (in press) Cerebellum size is positively correlated with geographic distribution range in anurans. Anim. Biol. DOI:10.1163/15707563-17000121.

  • ZhaoL.MaoM. & LiaoW.B. (2016) No evidence for the ‘expensive-tissue hypothesis’ in the dark-spotted frog (Pelophylax nigromaculata). Acta Herpetol.1169-73.

  • ZhongM.J.WangX.Y.HuangY.Y. & LiaoW.B. (2016) Altitudinal variation in organ size in Polypedates megacephalus. Herpetol. J.27235-238.

  • ZuurA.F.IenoE.N. & ElphickC.S. (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol.13-14.

Figures

  • View in gallery

    Means and standard deviation of body size, brain size and size of several other organs (e.g., gut, heart, lungs, liver, kidneys, limb muscles or spleen) in Fejervarya limnocharis populations from four different locations. VIF (variance inflation factor) was tested using van Noordwijk and de Jong’s (1986) model.

  • View in gallery

    A non-significant correlation between relative brain size and relative digestive tract size within each Fejervarya limnocharis population.

  • View in gallery

    The relationships between brain size and digestive tract or several other organs (e.g., heart, lung, liver, kidney, spleen and limb muscles) in the rice frog Fejervarya limnocharis using LMMs.

  • View in gallery

    A significant correlation between relative brain size and relative heart size within each Fejervarya limnocharis population.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 71 71 17
Full Text Views 183 183 32
PDF Downloads 3 3 0
EPUB Downloads 0 0 0