The effect of olive (Olea europaea L.) phenolics and sugar on Drosophila melanogaster’s development

in Animal Biology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

Olive leaves (Olea europaea L.) contain phenolics that are used for various aims and can also be utilized as free radical scavengers and as a powerful antioxidant source. In this study, our aim was to observe the effects of olive phenolics on the survival rate, development, sex ratio, and adult longevity of Drosophila melanogaster Meigen (Diptera: Drosophilidae) fed with sugar and with a sugar-free diet. The amount of malondialdehyde and the activity of glutathione S-transferase were examined with UV-VIS spectrophotometry in third-stage larvae, pupae and adults. For this purpose, dried olive fruit and leaf extracts were added at different concentrations to the insect’s sugary diets. The results reveal that 12 mg/L phenolic fruit extract and 4 M sucrose had a negative impact on the development and survival of these insects. It was also found that phenolic leaf extract and low sugar concentrations changed the sex ratio, leading to fewer females and more males. The use of phenolic fruit and phenolic leaf extracts with increased sugar-based diets raised the amount of oxidation as well as the detoxification activity in this model organism. These results demonstrate that low amounts of sugar and olive phenolics may be used as an adjunct to adult nutrients to improve the insect’s adult characteristics.

The effect of olive (Olea europaea L.) phenolics and sugar on Drosophila melanogaster’s development

in Animal Biology

Sections

References

AlirezaeiM.DezfoulianO.KheradmandA.NeamatiS.KhonsariA. & PirzadehA. (2012) Hepatoprotective effects of purified oleuropein from olive leaf extract against ethanol-induced damages in the rat. Iran J. Vet. Res.13218-226.

AndersenL.H.KristensenT.N.LoeschckeV.ToftS. & MayntzD. (2010) Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J. Insect Physiol.56336-340.

AşkınH. & UysalH. (2010) Drosophila melanogaster’de glisitein ve koumestrolün genotoksik etkilerinin somatik mutasyon ve rekombinasyon testi ile belirlenmesi [Determination of the genotoxic effects of glycitein and coumestrol on Drosophila melanogaster via somatic mutation and recombination test]. TÜBAV Bilim Dergisi3264-270.

BassT.M.GrandisonR.C.WongR.MartinezP.PartridgeL. & PiperM.D.W. (2007) Optimization of dietary restriction protocols in Drosophila. J. Gerontol. Biol.621071-1081.

Benavente GarciaO.CastilloJ.LorentoJ.OrtunoA. & Del-RioJ.A. (2000) Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem.68457-462.

BierE. (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat. Rev. Genet.69-23.

BirseR.T.ChoiJ.ReardonK.RodriguezJ.GrahamS.DiopS.OcorrK.BodmerR. & OldhamS. (2010) High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab.12533-544.

BlockG.PattersonB. & SubarA. (1992) Fruit, vegetables, and cancer prevention. A review of the epidemiological evidence. Nutr. Cancer181-29.

BrossT.G.RoginaB. & HelfandS.L. (2005) Behavioral, physical, and demographic changes in Drosophila populations through dietary restriction. Aging Cell4309-317.

Campos-SánchezJ.El HamssR.Munõz-SerranoA.AnallaM. & Alonso-MoragaA. (2007) Antigenotoxicity studies of olive oils. In: J.M.S. Fernández de Cañete & A.M. Medina (Eds) I Congreso de cultura del olivo pp. 783-795. Giennenses Institute of StudiesSpain.

CanavosoL.E.JouniZ.E.KarnasK.J.PenningtonJ.E. & WellsM.A. (2001) Fat metabolism in insects. Annu. Rev. Nutr.2123-46.

CastilloJ.J.AlcarazM. & Benavente-GarciaO. (2010) Antioxidant and radioprotective effects of olive leaf extract. Olives Olive Oil Health Dis. Prev.12951-958.

ChangC.L.AlbrechtC.El-ShallS.S.A. & KurashimaR. (2001) Adult reproductive capacity of Ceratitis capitata (Diptera: Tephritidae) on a chemically defined diet. Ann. Entomol. Soc. Am.94702-706.

CharoenprasertS. & MitchellA. (2012) Factors influencing phenolic compounds in table olives (Olea europaea). J. Agric. Food Chem.607081-7095.

ChatzigeorgiouS.ThaiQ.D.TchoumtchouaJ.TallasK.TsakiriE.N.PapassideriI.HalabalakiM.SkaltsounisA.L. & TrougakosI.P. (2017) Isolation of natural products with anti-ageing activity from the fruits of Platanus orientalis. Phytomedicine3353-61.

ChowanskiS.AdamskiZ.MarciniakP.RosinskiG.BüyükgüzelE.BüyükgüzelK.FalabellaP.ScranoL.VentrellaE.LelarioF. & BufoS.A. (2016) A review of bioinsecticidal activity of Solanaceae alkaloids. Toxins (Basel)8E60. DOI:10.3390/toxins8030060.

CohenA.C. & CrittendenP. (2004) Deliberately added and “cryptic” antioxidants in three artificial diets for insects. J. Econ. Entomol.97265-272.

CruzL.C.EckerA.DiasR.S.SeegerR.L.BragaM.M.BoligonA.A.MartinsI.K.Costa-SilvaD.G.BarbosaN.V.CañedoA.D.PosserT. & FrancoJ.L. (2016) Brazilian pampa biome honey protects against mortality, locomotor deficits and oxidative stress induced by hypoxia/reperfusion in adult Drosophila melanogaster. Neurochem. Res.41116-129.

Da SilvaR.A.DihlR.R.Nascimento e SantosD.De AbreuB.R.De LimaA.De AndradeH.H. & LehmannM. (2013) Evaluation of antioxidant and mutagenic activities of honey-sweetened cashew apple nectar. Food Chem. Toxicol.6261-67.

EckerA.Do Nascimento GonzagaT.K.S.SeegerR.L.Dos SantosM.M.LoretoJ.S.BoligonA.A.MeinerzD.F.LugokenskiT.H.da RochaJ.B.T. & BarbosaN.V. (2017) High-sucrose diet induces diabetic-like phenotypes and oxidative stress in Drosophila melanogaster: protective role of Syzygium cumini and Bauhinia forficata. Biomed. Pharmacother.89605-616.

ErdemS. & Ata ErenP. (2009) Tedavi amaciyla kullanılan bitkiler ve bitkisel ürünlerin yan etkileri [Adverse effects of herbal medicines and products]. Turk Hij. Den. Biol. Derg.66133-141.

EvangelistaC.M.W.AntunesL.M.G. & BianchiM.L.P. (2006) In vivo cytogenetic effects of multiple doses of dietary vegetable oils. Genet. Mol. Biol.29730-734.

FinneyD.J. (1971) Probit Analysis. Cambridge University PressNew York, NY, USA.

FoglemanJ. (2000) Response of Drosophila melanogaster to selection for P450-mediated resistance to isoquinoline alkaloids. Chem. Biol. Interact.12593-105.

GironM.D.SanchezF.HortelanoP.PeriagoJ.L. & SuarezM.D. (1999) Effects of dietary fatty acids on lipid metabolism in streptozotocin-induced diabetic rats. Metabolism48455-460.

GoodT.P. & TatarM. (2001) Age-specific mortality and reproduction respond to adult dietary restriction in Drosophila melanogaster. J. Insect Physiol.471467-1473.

GüneşE. (2013) Borik asitin Drosophila melanogaster’in bazı biyolojik özellikleri ve antioksidan enzim aktiviteleri üzerine etkisi. Doctoral thesis. Bülent Ecevit Üniversitesi Fen Bilimleri Enstitüsü Biyoloji ABD Zonguldak Turkey.

GüneşE. (2016) Besinler ve beslenme çalışmalarında Drosophila [Drosophila in food and nutrition studies]. KSÜ J. Nat. Sci.19236-243.

GüneşE. & BüyükgüzelE. (2017) Oxidative effects of boric acid on different developmental stages of Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). Turk. J. Entomol.413-15.

HabigW.H.PabstM.J. & JakobyW.B. (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J. Biol. Chem.2497130-7139.

HendrichsJ.KatsoyannosB.I.PapajD.R. & ProkopyR.J. (1991) Sex differences in movement between natural feeding and mating sites and tradeoffs between food consumption, mating success and predator evasion in Mediterranean fruit flies (Diptera: Tephritidae). Oecologia86223-231.

JafariM.LongA.D.MuellerL.D. & RoseM.R. (2006) The pharmacology of ageing in Drosophila. Curr. Drug Targets71-5.

JainS.K. & LevineS.N. (1995) Elevated lipid peroxidation and vitamin E quinine levels in heart ventricles of streptozoticin-treated diabetic rats. Free Radic. Biol. Med.18337-341.

JordensR.G.BerryM.D.GillottC. & BoultonA.A. (1999) Prolongation of life in an experimental model of ageing in Drosophila melanogaster. Neurochem. Res.24227-233.

KaramanM. (2016) In vivo enfeksiyon modellerinin yükselen yıldızı: Galleria mellonella larvası [The rising star of in-vivo infection models: Galleria mellonella larvae]. Turk. Mikrobiyol. Cem. Derg.461-7.

KayaB.ÇetinH.KocaoğluS. & DemirE. (2009) Farklı oranlardaki sentetik pyretroit ve piperonil butoksid (PBO) karışımlarının Drosophila melanogaster üzerindeki insektisidal ve genotoksik etkilerinin araştırılması. The Scientific and Technological Research Council of Turkey Tübitak TBAG project number 107T189.

KhanS.ShahM.M.AhmadR. & HaqI.U. (2016) The insecticidal potential of botanical extracts for management of peach fruit fly, Bracocera zonata Saunders, 1842 (Diptera: Tephritidae). Turk. J. Entomol.40445-453.

KiritsakisK.KontominasM.G.KontogiorgisC.Hadjipavlou-LitinaD.MoustakasA. & KiritsakisA. (2010) Composition and antioxidant activity of olive leaf extracts from Greek olive cultivars. J. Am. Oil Chem. Soc.87369-376.

KounatidisI.PapotiV.T.NenadisN.FranziosG.OikonomouM.PartheniouF.TsimidouM. & Mavragani-TsipidouP. (2009) Evaluation of potential genotoxicity of virgin olive oil (VOO) using the Drosophila wing-spot test. J. Agric. Food Chem.577785-7789.

LeeO.H. & LeeB.Y. (2010) Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour. Technol.1013751-3754.

LeeG. & ParkJ.H. (2004) Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics167311-323.

LeschC.GotoA.LindgrenM.BidlaG.DushayM.S. & TheopoldU. (2007) A role for Hemolectin in coagulation and immunity in Drosophila melanogaster. Dev. Comp. Immunol.311255-1263.

LiY.M.ChanH.Y.E.YaoX.Q.HuangY. & ChenZ.Y. (2008) Green tea catechins and broccoli reduce fat-induced mortality in Drosophila melanogaster. J. Nut. Biochem.19376-383.

LowryO.H.RosebrougN.I.FarrA.L. & RandallR.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem.19265-275.

LozinskyO.V. (2013) Aconitase and developmental end points as early indicators of cellular toxicity induced by xenobiotics in Drosophila melanogaster. Iran. J. Toxicol.8998-1003.

LozinskyO.V.LushchakO.V.KryshchukN.I.ShchypanskaN.Y.RiabkinaA.H.SkarbekS.V.MaksymivI.V.StoreyJ.M.StoreyK.B. & LushchakV.I. (2012) S-nitrosoglutathione-induced toxicity in Drosophila melanogaster: delayed pupation and induced mild oxidative/nitrosative stress in eclosed flies. Comp. Biochem. Physiol. A Mol. Integr. Physiol.164162-170.

MihailovicV.MaticS.MišicD.SolujicS.StanicS.KatanicJ.MladenovicM. & StankovicN. (2013) Chemical composition, antioxidant and antigenotoxic activities of different fractions of Gentiana asclepiadea L. roots extract. EXCLI J.12807-823.

MinK.J.FlattT.KulaotsI. & TatarM. (2007) Counting calories in Drosophila diet restriction. Exp. Gerontol.42247-251.

MorenoJ.J. & MitjavilaM.T. (2003) The degree of unsaturation of dietary fatty acids and the development of atherosclerosis (review). J. Nut. Biochem.14182-195.

NishibeS.HanY.NoguchiY.UedaH.YamazakiM.MizutaniK.KambaraT. & KishidaN. (2001) The inhibitory effects of the compounds from olive leaf on tumor necrosis factor production and on β-hexosaminidase release. Nat. Med.55205-208.

ÖnderB.Ş. (2010) A comparison of two different diets and their restricted groups in relation to developmental time and viability in Drosophila melanogaster. Hacettepe J. Biol. Chem.38311-317.

ÖzataL. (2006) Bazı Tekstil Boyalarının Drosophila melanogaster Üzerine Toksik Ve Genotoksik Etkilerinin Araştırılması. Doctoral thesis. İnönü Üniversitesi Fen Bilimleri Enstitüsü (Basılmamış) Malatya Turkey.

PiettaP.G.SimonettiP.GardanaC.BrusamolinoA.MorazzoniP. & BombardelliE. (1998) Catechin metabolites after intake of green tea infusions. Biofactors8111-118.

RobertsD.B. & StandenG.N. (1986) Environmental conditions. In: D.B. Roberts (Ed.) Drosophila: A Practical Approach pp. 19-20. IRL PressOxford, UK.

RoginaB. & HelfandS.L. (2000) Cu, Zn superoxide dismutase deficiency accelerates the time course of an age-related marker in Drosophila melanogaster. Biogerontology1163-169.

RomeroC.BrenesM.GarciaP. & GarridoA. (2002) Hydroxytyrosol 4-β-D-glucoside, an important phenolic compound in olive fruits and derived products. J. Agric. Food Chem.503835-3839.

SainiS.KumariS.VermaK.S. & SharmaA.K. (2013) A review on different types of animal models for pharmacological evaluation of antidiabetic drugs. Int. J. Pharm. Phytopharm. Res.32-12.

SarışenÖ. & ÇalışkanD. (2005) Fitoterapi: Bitkilerle Tedaviye Dikkat [Fitothrapy: herbal medicine, attetion of in primary health care]. Sted14182-187.

SatoH.GenetC. & StrehleA. (2007) Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem. Biophys. Res. Commun.362793-798.

ScacciniC.NardiniM.D’AquinoM.GentiliV.Di FeliceM. & TomassiG. (1992) Effect of dietary oils on lipid peroxidation and on antioxidant parameters of rat plasma and lipoprotein fractions. J. Lipid Res.33627-633.

SisodiaS. & SinghB.N. (2012) Experimental evidence for nutrition regulated stress resistance in Drosophila ananassae. PLoS One7e46131. DOI:10.1371/journal.pone.0046131.

SnedecorG.W. & CochranW.G. (1967) Statistical Methods. 6th Edition. Iowa State University PressAmes, IA, USA.

SpeakmanJ.R. & MitchellS.E. (2011) Caloric restriction. Mol. Aspects Med.32159-221.

SPSS 1997. User’s Manual Version 10. SPSS Inc. Chicago IL USA.

StarkA.H. & MadarZ. (2002) Olive oil as a functional food: epidemiology and nutritional approaches. Nut. Rev.60170-176.

TaşkınV.KüçükakyüzK.ArslanT.ÇölB. & Taşkın GöçmenB. (2007) The biochemical basis of insecticide resistance and determination of esterase enzyme patterns by using PAGE in field collected populations of Drosophila melanogaster from Muğla province of Turkey. J. Cell Mol. Biol.631-40.

TobaG. & AigakiT. (2000) Disruption of the microsomal glutathione S-transferase-like gene reduces life span of Drosophila melanogaster. Gene253179-187.

TrichopoulouA. & VasilopoulouE. (2000) Mediterranean diet and longevity. Br. J. Nut.84205-209.

UncklessR.L.RottschaeferS.M. & LazzaroB.P. (2015) The complex contributions of genetics and nutrition to immunity in Drosophila melanogaster. PLoS Genet.11e1005030. DOI:10.1371/journal.pgen.1005030.

VentrellaE.AdamskiZ.ChudzińskaE.Miądowicz-KobielskaM.MarciniakP.BüyükgüzelE.BüyükgüzelK.ErdemM.FalabellaP.ScranoL. & BufoS.A. (2016) Solanum tuberosum and Lycopersicon esculentum leaf extracts and single metabolites affect development and reproduction of Drosophila melanogaster. PLoS One11e0155958. DOI:10.1371/journal.pone.0155958.

VinhaA.F.FerreresF.SilvaB.M.ValentaoP.GonçalvesA.PereiraJ.A.OliveriaM.B.SeabreR.M. & AndradeP.B. (2005) Phenolic profiles of Portuguese olive fruits (Olea europaea L.): influence of cultivar and geographical origin. Food Chem.89561-568.

WangL. & ClarkA.G. (1995) Physiological genetics of the response to a high sucrose diet by Drosophila melanogaster. Biochem. Genet.33149-165.

WangM.H.LazebnyO.HarshmanL.G. & NuzhdinS.V. (2004) Environment-dependent survival of Drosophila melanogaster: a quantitative genetic analysis. Aging Cell3133-140.

WuK.ZhangJ.ZhangQ.ZhuS.ShaoQ.ClarkK.D.LiuY. & LingE. (2015) Plant phenolics are detoxified by prophenoloxidase in the insect gut. Sci. Rep.516823. DOI:10.1038/srep16823.

YesilbursaD.SerdarZ.SerdarA.SaracM.CoskunS. & JaleC. (2005) Lipid peroxides in obese patients and effects of weight loss with orlistat on lipid peroxides levels. Int. J. Obes.29142-145.

ZaslaverM.OfferS.KeremZ.StarkA.H.WellerJ.I.ElirazA. & MadarZ. (2005) Natural compounds derived from foods modulate nitric oxide status in epithelial lung cells. J. Agric. Food Chem.539934-9939.

Figures

  • View in gallery

    Lethal effect of sucrose concentrations on D. melanogaster (Finney, 1971).

  • View in gallery

    Experimental design; cross table.

  • View in gallery

    HPLC chromatogram of phenolic compounds determined in olive fruit. (1) H-tyrosol; (3) tyrosol; (4) vanillic acid; (7) caffeic acid; (8) vanillin; (9) p-coumaric acid; (10) ferulic acid; (11) o-coumaric acid; (12) dimethyloleuropein; (13) verbascosid; (14) routine; (15) oleuropein; (16) luteolin-7-O-glucoside; (18) luteolin-4-O-glucoside; (19) apigenin-7-O-glucoside; (20) luteolin; (21) apigenin.

  • View in gallery

    HPLC chromatogram of phenolic compounds determined in olive leaf. The order of compounds regarding the retention time is the same in both fruit and leaf.

  • View in gallery

    Quantities of phenolic compounds in olive leaves and fruits (mg/kg dry matter).

  • View in gallery

    Effects of sugar and olive extracts on survival and development of D. melanogaster.

  • View in gallery

    (Continued.)

  • View in gallery

    Effect of olive phenolic extracts on insect sex ratio and mature life span grown with artificial nutrients containing different concentrations of sugar.

  • View in gallery

    Malondialdehyde (MDA) levels in various developmental stages of insect raised with artificial nutrient containing various concentrations of olive phenolic extracts and sucrose.

  • View in gallery

    Glutathione S-transferase (GST) activities in various developmental stages of insect raised with artificial nutrient containing various concentrations of olive phenolic extracts and sucrose.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 132 132 87
Full Text Views 102 102 71
PDF Downloads 12 12 8
EPUB Downloads 0 0 0