Variation in testis weight of the Tibetan toad Scutiger boulengeri along a narrow altitudinal gradient

in Animal Biology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

Life-history theory predicts that organisms inhabiting harsh environments such as high altitudes should invest less in reproduction and more in survival. Testis size is associated with the intensity of male-male competition for mating and thus may be treated as an indicator of male reproductive investment. Hence, it may be expected that organisms will reduce their testis size with increasingly harsh environments. Here we test this prediction in a toad species, Scutiger boulengeri, endemic to the Tibetan plateau using data from three populations located at altitudes of 4078, 4276, and 4387 m. Consistent with the prediction, male toads exhibited smaller testes at higher altitudes, despite the relatively narrow altitudinal span. It is likely that cold climates and strong seasonality constrain the ability of high-altitude male toads to allocate more energy into reproduction, thereby leading to small testis size. In addition, the left testis was significantly heavier than the right one and the degree of size asymmetry was unrelated to either altitude or body condition.

Variation in testis weight of the Tibetan toad Scutiger boulengeri along a narrow altitudinal gradient

in Animal Biology

Sections

References

BervenK.A. (1982) The genetic basis of altitudinal variation in the wood frog Rana sylvatica. I. An experimental analysis of life history traits. Evolution36962-983.

BriskieJ.V. & MontgomerieR. (2007) Testis size, sperm size and sperm competition. In: B.G.M. Jamieson (Ed.) Reproductive Biology and Phylogeny of Birds. Part A: Phylogeny Morphology Hormones Fertilization pp. 513-551. Science PublishersEnfield, NH, USA.

BrownJ.L. (1964) The evolution of diversity in avian territorial systems. Wilson Bull.76160-169.

ByrneP.RobertsJ.D. & SimmonsL.W. (2002) Sperm competition selects for increased testis mass in Australian frogs. J. Evol. Biol.15347-355.

CalhimS. & BirkheadT.R. (2007) Testes size in birds: quality versus quantity-assumptions, errors, and estimates. Behav. Ecol.18271-275.

ChenW.TangZ.H.FanY.G.WangY. & PikeD.A. (2013) Maternal investment increases with altitude in a frog on the Tibetan Plateau. J. Evol. Biol.262710-2715.

ChenW.PikeD.A.HeD.J.WangY.RenL.N.WangX.Y.FanX.G. & LuX. (2014) Altitude decreases testis weight of a frog (Rana kukunoris) on the Tibetan Plateau. Herpetol. J.24183-188.

Clutton-BrockT.H.HodgeS.J. & FlowerT.P. (2008) Group size and the suppression of subordinate reproduction in Kalahari meerkats. Anim. Behav.76689-700.

CumminsC.P. (1986) Temporal and spatial variation in egg size and fecundity in Rana temporaria. J. Anim. Ecol.55303-316.

Czarnołe’skiM. & KozłowskiJ. (1998) Do Bertalanffy’s growth curves result from optimal resource allocation? Ecol. Lett.15-7.

DuellmanW.E. & TruebL. (1986) Biology of Amphibians. McGraw-Hill Book CompanyToronto, ON, Canada.

DziminskiM.A.RobertsJ.D.BeveridgeM. & SimmonsL.W. (2009) Sperm competitiveness in frogs: slow and steady wins the race. Proc. R. Soc. B2763955-3961.

EmlenS.T. & OringL.W. (1977) Ecology, sexual selection, and the evolution of mating systems. Science197215-223.

FeiL.HuS.Q.YeC.Y.TianW.S.JiangJ.P.ZhongS.X. & WangY.S. (2009) Fauna Sinica Amphibia Vol. 3 Anura Ranidae. Science PressBeijing, China.

GibbonsM.M. & McCarthyT.K. (1986) The reproductive output of frogs Rana temporaria (L.) with particular reference to body size and age. J. Zool.209579-593.

GollmanB. & GollmanG. (1996) Geographic variation of larval traits in the Australian frog Geocrinia victoriana. Herpetologica52181-187.

GrantJ.W.A.GabouryC.L. & LevittH.L. (2000) Competitor-to-resource ratio, a general formulation of operational sex ratio, as a predictor of competitive aggression in Japanese medaka (Pisces: Oryziidae). Behav. Ecol.11670-675.

HallidayT.R. & VerrellP.A. (1988) Body size and age in amphibians and reptiles. J. Herpetol.22253-265.

HarcourtA.H.HarveyP.H.LarsonS.G. & ShortR.V. (1981) Testis weight, body weight, and breeding system in primates. Nature29355-57.

HettyeyA.LaurilaA.HerczegG.JönssonK.I.KovácsT. & MeriläJ. (2005) Does testis weight decline towards the Subarctic? A case study on the common frog, Rana temporaria. Naturwissenschaften92188-192.

HowardJ.H. & WallaceR.L. (1985) Life history characteristics of populations of the long-toed salamander (Ambystoma macrodactylum) from different altitudes. Am. Midl. Nat.113361-372.

JinL.MiZ.P. & LiaoW.B. (2016a) Altitudinal variation in male reproductive investment in a polyandrous frog species (Hyla gongshanensis jingdongensis). Anim. Biol.66289-303.

JinL.YangS.N.LiaoW.B. & LüpoldS. (2016b) Altitude underlies variation in the mating system, somatic condition and investment in reproductive traits in male Asian grass frogs (Fejervarya limnocharis). Behav. Ecol. Sociobiol.701197-1208.

KappelerP.M. (1997) Intrasexual selection and testis size in strepsirhine primates. Behav. Ecol.810-19.

KoskelaP. & PasanenS. (1975) The reproductive biology of the female common frog, Rana temporaria L., in northern Finland. Aquilo Ser. Zoologica.161-12.

LakeP.E. (1981) Male genital organs. In: A.S. King & J. McLelland (Eds) Form and Function in Birds pp. 1-61. Academic PressLondon, UK.

LiaoW.B. & LuX. (2010) Age and growth of a subtropical high-elevation torrent frog, Amolops mantzorum, in western China. J. Herptol.44172-176.

LiaoW.B. & LuX. (2012) Adult body size=f(initial size+growth rate×age): explaining the proximate cause of Bergman’s cline in a toad along altitudinal gradients. Evol. Ecol.26579-590.

LiaoW.B.LuX.ShenY.W. & HuJ.C. (2011) Age structure and body size of two populations of the rice frog Rana limnocharis from different altitudes. Ital. J. Zool.78215-221.

LiaoW.B.LouS.L.ZengY. & KotrschalA. (2016) Large brains, small guts: the expensive tissue hypothesis supported in anurans. Am. Nat.188693-700.

LichtL.E. (1975) Comparative life history features of the western spotted frog, Rana pretiosa, from low- and high-elevation populations. Can. J. Zool.531254-1258.

LiuY.H.LiaoW.B.ZhouC.Q.MiZ.P. & MaoM. (2011) Asymmetry of testes in Guenther’s frog, Hylarana guentheri (Anuar: Ranidae). Asian Herpetol. Res.2234-239.

LuX.LiB. & LiangJ.J. (2006) Comparative demography of a temperate anuran, Rana chensinensis, along a relatively fine elevational gradient. Can. J. Zool.841789-1795.

MaX.Y. & LuX. (2009) Sexual size dimorphism in relation to age and growth based on skeletochronological analysis in a Tibetan frog. Amphibia-Reptilia30351-359.

MaX.Y.LuX. & MeriläJ. (2009a) Altitudinal decline of body size in a Tibetan frog. J. Zool.279364-371.

MaX.Y.TongL.N. & LuX. (2009b) Variation of body size, age structure and growth of a temperate frog, Rana chensinensis, over an elevational gradient in northern China. Amphibia-Reptilia30111-117.

MaiC.L.LiuY.H.JinL.MiZ.P. & LiaoW.B. (2017) Altitudinal variation in somatic condition and investment in reproductive traits in male Yunnan pond frog (Pelophylax pleuraden). Zool. Anz.266189-195.

MeriläJ. & SheldonB.C. (1999) Testis size variation in the greenfinch Carduelis chloris: relevance for some recent models of sexual selection. Behav. Ecol. Sociobiol.45115-123.

MiZ.P.LiaoW.B.JinL.LouS.L.ChengJ. & WuH. (2012) Testes asymmetry and sperm length in Rhacophorus omeimontis. Zool. Sci.29368-372.

MøllerA.P. (1994) Directional selection and directional asymmetry: testes size and secondary sexual characters in birds. Proc. R. Soc. B258147-151.

MorrisonC. & HeroJ.M. (2003) Geographic variation in life history characteristics of amphibians: a review. J. Anim. Ecol.72270-279.

ParkerG.A. (1970) Sperm competition and its evolutionary consequences in the insects. Biol. Rev.45525-567.

PitcherT.E. & StutchburyB.J.M. (1998) Latitudinal variation in testis size in six species of North American songbirds. Can. J. Zool.76618-622.

PitcherT.E.DunnP.O. & WhittinghamL.A. (2005) Sperm competition and the evolution of testes size in birds. J. Evol. Biol.18557-567.

RisingJ.D. (1996) Relationship between testis size and mating systems in American sparrows (Emberizinae). Auk113224-228.

RoffD.A. (2002) Life History Evolution. Sinauer Associates Inc.Sunderland, MA, USA.

RyserJ. (1996) Comparative life histories of a low- and a high-elevation population of the common frog Rana temporaria. Amphibia-Reptilia17183-195.

Schulte-HosteddeA.I. & MillarJ.S. (2004) Intraspecific variation of testis size and sperm length in the yellowpine chipmunk (Tamias amoenus): implications for sperm competition and reproductive success. Behav. Ecol. Sociobiol.55272-277.

Sehulte-HosteddeA.I.MillarJ.S. & HieklingG.J. (2005) Condition dependence of testis size in small mammals. Evol. Ecol. Res.7143-149.

SimmonsL.W. & KotiahoJ.S. (2002) Evolution of ejaculates: patterns of phenotypic and genotypic variation and condition dependence in sperm competition traits. Evolution561622-1631.

SongZ.M.HuangD.M. & ChangC. (1990) On the development and population age structure of Scutiger boulengeri tadpoles. Acta Zool. Sin.36187-192.

TangT.LuoY.HuangC.H.LiaoW.B. & HuangW.C. (2018) Variation in somatic condition and testes mass in Feirana quadranus along an altitudinal gradient. Anim. Biol. DOI:10.1163/15707563-17000142.

TilleyS.G. (1980) Life histories and comparative demography of two salamander populations. Copeia1980806-821.

ZamudioK.R.BellR.C.NaliR.C.HaddadC.F.B. & PradoC.P.A. (2016) Polyandry, predation, and the evolution of frog reproductive modes. Am. Nat.188S41-S61.

ZengY.LouS.L.LiaoW.B. & JehleR. (2014) Evolution of sperm morphology in anurans: insights into the roles of mating system and spawning locations. BMC Evol. Biol.14104. DOI:10.1186/1471-2148-14-104.

ZhangL.X. & LuX. (2012) Amphibians live longer at higher altitudes but not at higher latitudes. Biol. J. Linn. Soc.106623-632.

ZhangL.X.MaX.Y.JiangJ.P. & LuX. (2012) Stronger condition dependence in female size explains altitudinal variation in sexual size dimorphism of a Tibetan frog. Biol. J. Linn. Soc.107558-565.

ZhouC.Q.MaoM.LiaoW.B.MiZ.P. & LiuY.H. (2011) Testis asymmetry in the dark-spotted frog Rana nigromaculata. Herpetol. J.21181-185.

Figures

  • View in gallery

    Mean annual temperature (A), and mean annual precipitation (B) in relation to altitude in southeastern Tibet (the regression lines were fit to data from the 1966-2016 database of the Tibet Meteorological Bureau). The altitudes at which the toads were sampled are: a, 4078 m; b, 4276 m; c, 4387 m.

  • View in gallery

    Body length, body weight, age and testis weight of Scutiger boulengeri from three populations.

  • View in gallery

    Resultsof GLMs that were fitted to investigate testis weight of Scutiger boulengeri from three populations in relation to altitude. Significant values are in italics.

  • View in gallery

    Testis weight of Scutiger boulengeri from three populations, showing the predicted values from GLM models (mean ± SE). A. Left testis, B. Right testis, C. Both testes. Asterisks indicate a significant difference (P<0.05) between the groups.

  • View in gallery

    Testis weight in relation to body weight of Scutiger boulengeri from three populations. The lines are the predicted values from GLMs. A. Left testis, B. Right testis, C. Both testes; a. 4078 m, b. 4276 m, c. 4387 m.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 52 52 35
Full Text Views 71 71 54
PDF Downloads 4 4 1
EPUB Downloads 0 0 0