Effects of speed on pheasant gaits and hindlimb joint angles

In: Animal Biology

Abstract

When studying the gait of pheasants, an intermittent-flight bird, it is necessary to take into account changes in the gaits and hindlimb joint angles resulting from increases of speed. In this study, pheasant locomotion postures were recorded on a speed-variable treadmill with high-speed cameras. Firstly, kinematic analysis showed that the stride cycle of pheasants decreased and the stride length increased with increasing speed. The duty factor also decreased, but was less than 0.5 in only about 10% of measurements. Thus, pheasants are more inclined to choose the grounded running or walking gait in laboratory situations. Secondly, changes in the tarsometatarso-phalangeal joint angle and the intertarsal joint angle at touch-down, mid-stance and lift-off concomitant with speed variation were studied. Tarsometatarso-phalangeal joint angle was found not to be significantly affected by changes in speed, but changed over larger ranges than the intertarsal joint angle. Thirdly, the continuous changes in the joint angles were studied during a complete stride cycle. The curves shifted leftward with increasing speed. Finally, the changes at four main positions were analyzed with increasing speed.

  • Abourachid, A. (2001) Kinematic parameters of terrestrial locomotion in cursorial (ratites), swimming (ducks), and striding birds (quail and guineafowl). Comp. Biochem. Phys. A, 131, 113-119.

    • Search Google Scholar
    • Export Citation
  • Abourachid, A., Hackert, R., Herbin, M., Libourel, P.A., Lambert, F., Gioanni, H., Provini, P., Blazevic, P. & Hugel, V. (2011) Bird terrestrial locomotion as revealed by 3D kinematics. Zoology, 114, 360-368.

    • Search Google Scholar
    • Export Citation
  • Alexander, R.M. (1989) Optimization and gaits in the locomotion of vertebrates. Physiol. Rev., 69, 1199-1227.

  • Andrada, E., Nyakatura, J.A., Bergmann, F. & Blickhan, R. (2013) Adjustments of global and local hindlimb properties during terrestrial locomotion of the common quail (Coturnix coturnix). J. Exp. Biol., 217, 3906-3916.

    • Search Google Scholar
    • Export Citation
  • Biewener, A.A. (2006) Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. J. Exp. Zool. A Comp. Exp. Biol., 305, 899-911.

    • Search Google Scholar
    • Export Citation
  • Birn-Jeffery, A.V. & Daley, M.A. (2012) Birds achieve high robustness in uneven terrain through active control of landing conditions. J. Exp. Biol., 215, 2117-2127.

    • Search Google Scholar
    • Export Citation
  • Birn-Jeffery, A.V., Hubicki, C.M., Blum, Y., Renjewski, D., Hurst, J.W. & Daley, M.A. (2014) Don’t break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain. J. Exp. Biol., 217, 3786-3796.

    • Search Google Scholar
    • Export Citation
  • Cavagna, G.A. (1975) Force platforms as ergometers. J. Appl. Physiol., 39, 174-179.

  • Cavagna, G.A., Heglund, N.C. & Taylor, C.R. (1977) Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. J. Physiol., 233, 243-261.

    • Search Google Scholar
    • Export Citation
  • Clark, J. & Alexander, R.M. (1975) Mechanics of running by quail (Coturnix). J. Zool., 176, 87-113.

  • Daley, M.A., Voloshina, A. & Biewener, A.A. (2009) The role of intrinsic muscle mechanics in the neuromuscular control of stable running in the guineafowl. J. Physiol., 587, 2693-2707.

    • Search Google Scholar
    • Export Citation
  • Daley, M.A., Channon, A.J., Nolan, G.S. & Hall, J. (2016) Preferred gait and walk-run transition speeds in ostriches measured using GPS-IMU sensors. J. Exp. Biol., 219, 3301-3308.

    • Search Google Scholar
    • Export Citation
  • Gatesy, S.M. (1999) Guineafowl hind limb function. I: cineradiographic analysis and speed effects. J. Morphol., 240, 115-125.

  • Gatesy, S.M. & Biewener, A.A. (1991) Bipedal locomotion: effects of speed, size and limb posture in birds and humans. J. Zool., 224, 127-147.

    • Search Google Scholar
    • Export Citation
  • Geyer, H., Seyfarth, A. & Blickhan, R. (2006) Compliant leg behaviour explains basic dynamics of walking and running. Proc. Biol. Sci., 273, 2861-2867.

    • Search Google Scholar
    • Export Citation
  • Gordon, J.C., Rankin, J.W. & Daley, M.A. (2015) How do treadmill speed and terrain visibility influence neuromuscular control of guineafowl locomotion. J. Exp. Biol., 218, 3010-3022.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, M. (1966) Analysis of the symmetrical gaits of tetrapods. Folia Biotheor., 6, 9-22.

  • Hutchinson, J.R., Famini, D., Lair, R. & Kram, R. (2003) Are fast-moving elephants really running? Nature, 422, 493-494.

  • Kambic, R.E., Roberts, T.J. & Gatesy, S.M. (2014) Long-axis rotation: a missing degree of freedom in avian bipedal locomotion. J. Exp. Biol., 217, 2770-2782.

    • Search Google Scholar
    • Export Citation
  • McMahon, T.A., Valiant, G. & Frederick, E.C. (1987) Groucho running. J. Appl. Physiol., 62, 2326-2337.

  • Nudds, R.L., Folkow, L.P., Lees, J.J., Tickle, P.G., Stokkan, K.-A. & Codd, J.R. (2011) Evidence for energy savings from aerial running in the Svalbard rock ptarmigan (Lagopus muta hyperborea). Proc. Biol. Sci., 278, 2654-2661.

    • Search Google Scholar
    • Export Citation
  • Nyakatura, J.A., Andrada, E., Grimm, N., Weise, H. & Fischer, M.S. (2012) Kinematics and center of mass mechanics during terrestrial locomotion in northern lapwings (Vanellus vanellus, Charadriiformes). J. Exp. Zool. Part A, 317, 580-594.

    • Search Google Scholar
    • Export Citation
  • O’Connor, S.M. (2009) The relative roles of dynamics and control in bipedal locomotion. PhD thesis, University of Michigan.

  • Reilly, S.M. (2000) Locomotion in the quail (Coturnix japonica): the kinematics of walking and increasing speed. J. Morphol., 243, 173-185.

    • Search Google Scholar
    • Export Citation
  • Rubenson, J., Heliams, D.B., Lloyd, D.G. & Fournier, P.A. (2004) Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase. Proc. Biol. Sci., 271, 1091-1099.

    • Search Google Scholar
    • Export Citation
  • Rubenson, J., Lloyd, D.G., Besier, T.F., Heliams, D.B. & Fournier, P.A. (2007) Running in ostriches (Struthio camelus): three-dimensional joint axes alignment and joint kinematics. J. Exp. Biol., 210, 2548-2562.

    • Search Google Scholar
    • Export Citation
  • Schaller, N.U., Herkner, B., Villa, R. & Aerts, P. (2009) The intertarsal joint of the ostrich (Struthio camelus): anatomical examination and function of passive structures in locomotion. J. Anat., 214, 830-847.

    • Search Google Scholar
    • Export Citation
  • Schaller, N.U., D’Août, K., Villa, R., Herkner, B. & Aerts, P. (2011) Toe function and dynamic pressure distribution in ostrich locomotion. J. Exp. Biol., 214, 1123-1130.

    • Search Google Scholar
    • Export Citation
  • Smith, N.C., Jespers, K.J. & Wilson, A.M. (2010) Ontogenetic scaling of locomotor kinetics and kinematics of the ostrich (Struthio camelus). J. Exp. Biol., 213, 1347-1355.

    • Search Google Scholar
    • Export Citation
  • Sokal, R.R. & Rohlf, F.J. (1995) Biometry: the Principles and Practice of Statistics in Biological Research. WH Freeman, New York, NY, USA.

    • Search Google Scholar
    • Export Citation
  • Stoessel, A. & Fischer, M.S. (2012) Comparative intralimb coordination in avian bipedal locomotion. J. Exp. Biol., 215, 4055-4069.

  • Verstappen, M. & Aerts, P. (2000) Terrestrial locomotion in the black-billed magpie. I. Spatio-temporal gait characteristics. Motor Control, 4, 150-164.

    • Search Google Scholar
    • Export Citation
  • Verstappen, M., Aerts, P. & Van Damme, R. (2000) Terrestrial locomotion in the black-billed magpie: kinematic analysis of walking, running and out-of-phase hopping. J. Exp. Biol., 203, 2159-2170.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., Ji, Q., Luo, G., Xue, S., Ma, S., Li, J. & Ren, L. (2017a) Phalangeal joints kinematics during ostrich (Struthio camelus) locomotion. PeerJ, 5, e2857. DOI:10.7717/peerj.2857.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., Han, D., Ma, S., Luo, G., Ji, Q., Xue, S., Yang, M. & Li, J. (2017b) Plantar pressure distribution of ostrich during locomotion on loose sand and solid ground. PeerJ, 5, e3613. DOI:10.7717/peerj.3613.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 86 86 12
Full Text Views 20 20 0
PDF Downloads 18 18 0