Do you want to stay informed about this journal? Click the buttons to subscribe to our alerts.
Next Generation Sequencing (NGS) and related technologies have revolutionized the field of conservation and population genetics, providing novel tools and the capacity to discover thousands of new Single Nucleotide Polymorphisms (SNPs) for the analysis of population parameters. However, gathering NGS data for organisms with very large genomes, such as amphibians, remains challenging because it is still unclear how the current methods perform. Here, we use the Genotyping-by-Sequencing (GBS) approach to generate SNP data for the genotyping of two amphibian species that are of conservation concern, the Sardinian brook salamander (Euproctus platycephalus) and the Italian stream frog (Rana italica). Both E. platycephalus and R. italica have very large genomes (5.53 Gb and >20 Gb, respectively) so genomic data are not available for either of them. We used 95 individual samples and one Illumina lane for each species, with an additional lane for E. platycephalus. After filtering, we obtained 961 and 854 high-coverage SNPs for E. platycephalus and R. italica, respectively. Our results suggest that GBS can serve as a reliable and cost-effective method for genotyping large amphibian genomes, including non-model species.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Andrews, K.R., Good, J.M., Miller, M.R., Luikart, G. & Hohenlohe, P.A. (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet., 17, 81-92.
Baird, N.A., Etter, P.D., Atwood, T.S., Currey, M.C., Shiver, A.L., Lewis, Z.A., Selker, E.U., Cresko, W.A. & Johnson, E.A. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. Plos One, 3, e3376. DOI:10.1371/journal.pone.0003376.
Ball, S.E., Bovero, S., Sotgiu, G., Tessa, G., Angelini, C., Bielby, J., Durrant, C., Favelli, M., Gazzaniga, E. & Garner, T.W. (2017) Islands within an island: population genetic structure of the endemic Sardinian newt, Euproctus platycephalus. Ecol. Evol., 7, 1190-1211.
Beebee, T.J.C. (2005) Conservation genetics of amphibians. Heredity, 95, 423-427.
Bell, R.C., Drewes, R.C. & Zamudio, K.R. (2015) Reed frog diversification in the Gulf of Guinea: overseas dispersal, the progression rule, and in situ speciation. Evolution, 69, 904-915.
Calboli, F.C.F., Fisher, M.C., Garner, T.W.J. & Jehle, R. (2011) The need for jumpstarting amphibian genome projects. Trends Ecol. Evol., 26, 378-379.
Canestrelli, D., Cimmaruta, R. & Nascetti, G. (2008) Population genetic structure and diversity of the Apennine endemic stream frog, Rana italica – insights on the Pleistocene evolutionary history of the Italian Peninsular biota. Mol. Ecol., 17, 3856-3872.
Capriglione, T., Olmo, E., Odierna, G., Improta, B. & Morescalchi, A. (1987) Cytofluorometric DNA base determination in vertebrate species with different genome sizes. Basic Appl. Histochem., 31, 119-126.
Catchen, J., Hohenlohe, P.A., Bassham, S., Amores, A. & Cresko, W.A. (2013) Stacks: an analysis tool set for population genomics. Mol. Ecol., 22, 3124-3140.
Catchen, J.M., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J.H. (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3 (Bethesda), 1, 171-182.
Chen, C., Mitchell, S.E., Elshire, R.J., Buckler, E.S. & El-Kassaby, Y.A. (2013) Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform. Tree Genet. Genomes, 9, 1537-1544.
Christensen, K.A., Brunelli, J.P., Lambert, M.J., DeKoning, J., Phillips, R.B. & Thorgaard, G.H. (2013) Identification of single nucleotide polymorphisms from the transcriptome of an organism with a whole genome duplication. BMC Bioinformatics, 14, 325. DOI:10.1186/1471-2105-14-325.
Coulson, T., MacNulty, D.R., Stahler, D.R., Vonholdt, B., Wayne, R.K. & Smith, D.W. (2011) Modeling effects of environmental change on wolf population dynamics, trait evolution, and life history. Science, 334, 1275-1278.
De Donato, M., Peters, S.O., Mitchell, S.E., Hussain, T. & Imumorin, I.G. (2013) Genotyping-by-Sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing. Plos One, 8, e62137. DOI:10.1371/journal.pone.0062137.
Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S. & Mitchell, S.E. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. Plos One, 6, e19379. DOI:10.1371/journal.pone.0019379.
Evans, T., Johnson, A.D. & Loose, M. (2018) Virtual genome walking across the 32 Gb Ambystoma mexicanum genome; assembling gene models and intronic sequence. Sci. Rep., 8, 618. DOI:10.1038/s41598-017-19128-6.
Gregory, T.R. (2018) Animal Genome Size Database. http://www.genomesize.com. Accessed on 26 October 2018.
Guo, B.C., Lu, D., Liao, W.B. & Merila, J. (2016) Genomewide scan for adaptive differentiation along altitudinal gradient in the Andrew’s toad Bufo andrewsi. Mol. Ecol., 25, 3884-3900.
Harvey, M.G. & Brumfield, R.T. (2015) Genomic variation in a widespread Neotropical bird (Xenops minutus) reveals divergence, population expansion, and gene flow. Mol. Phylogenet. Evol., 83, 305-316.
Hellsten, U., Harland, R.M., Gilchrist, M.J., Hendrix, D., Jurka, J., Kapitonov, V., Ovcharenko, I., Putnam, N.H., Shu, S., Taher, L., Blitz, I.L., Blumberg, B., Dichmann, D.S., Dubchak, I., Amaya, E., Detter, J.C., Fletcher, R., Gerhard, D.S., Goodstein, D., Graves, T., Grigoriev, I.V., Grimwood, J., Kawashima, T., Lindquist, E., Lucas, S.M., Mead, P.E., Mitros, T., Ogino, H., Ohta, Y., Poliakov, A.V., Pollet, N., Robert, J., Salamov, A., Sater, A.K., Schmutz, J., Terry, A., Vize, P.D., Warren, W.C., Wells, D., Wills, A., Wilson, R.K., Zimmerman, L.B., Zorn, A.M., Grainger, R., Grammer, T., Khokha, M.K., Richardson, P.M. & Rokhsar, D.S. (2010) The genome of the Western clawed frog Xenopus tropicalis. Science, 328, 633-636.
Jones, F.C., Grabherr, M.G., Chan, Y.F., Russell, P., Mauceli, E., Johnson Swofford, R., Pirun, M., Zody, M.C., White, S., Birney, E., Searle, S., Schmutz, J., Grimwood, J., Dickson, M.C., Myers, R.M., Miller, C.T., Summers, B.R., Knecht, A.K., Brady, S.D., Zhang, H., Pollen, A.A., Howes, T., Amemiya, C., Baldwin, J., Bloom, T., Jaffe, D.B., Nicol, R., Wilkinson, J., Lander, E.S., Di Palma, F., Lindblad-Toh, K. & Kingsley, D.M. (Broad Institute Genome Sequencing Platform & Whole Genome Assembly Team, 2012) The genomic basis of adaptive evolution in threespine sticklebacks. Nature, 484, 55-61.
Keinath, M.C., Timoshevskiy, V.A., Timoshevskaya, N.Y., Tsonis, P.A., Voss, S.R. & Smith, J.J. (2015) Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing. Sci. Rep., 5, 16413. DOI:10.1038/srep16413.
Lanza, B., Andreone, F., Bologna, M.A., Corti, C. & Razzetti, E. (2007) Fauna d’Italia Amphibia. Calderini, Bologna, Italy.
Larson, W.A., Seeb, L.W., Everett, M.V., Waples, R.K., Templin, W.D. & Seeb, J.E. (2014) Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evol. Appl., 7, 355-369.
Lecis, R. & Norris, K. (2004) Population genetic diversity of the endemic Sardinian newt Euproctus platycephalus: implications for conservation. Biol. Cons., 119, 263-270.
Li, C., Waldbieser, G., Bosworth, B., Beck, B.H., Thongda, W. & Peatman, E. (2014) SNP discovery in wild and domesticated populations of blue catfish, Ictalurus furcatus, using genotyping-by-sequencing and subsequent SNP validation. Mol. Ecol. Res., 14, 1261-1270.
Lu, F., Lipka, A.E., Glaubitz, J., Elshire, R., Cherney, J.H., Casler, M.D., Buckler, E.S. & Costich, D.E. (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. Plos Genetics, 9, e1003215. DOI:10.1371/journal.pgen.1003215.
Mable, B.K., Alexandrou, M.A. & Taylor, M.I. (2011) Genome duplication in amphibians and fish: an extended synthesis. J. Zool., 284, 151-182.
Miller, J.M., Malenfant, R.M., David, P., Davis, C.S., Poissant, J., Hogg, J.T., Festa-Bianchet, M. & Coltman, D.W. (2014) Estimating genome-wide heterozygosity: effects of demographic history and marker type. Heredity, 112, 240-247.
Muñoz, J., Chaturvedi, A., De Meester, L. & Weider, L.J. (2016) Characterization of genome-wide SNPs for the water flea Daphnia pulicaria generated by genotyping-by-sequencing (GBS). Sci. Rep., 6, 28569. DOI:10.1038/srep28569.
Narum, S.R., Buerkle, C.A., Davey, J.W., Miller, M.R. & Hohenlohe, P.A. (2013) Genotyping-by-sequencing in ecological and conservation genomics. Mol. Ecol., 22, 2841-2847.
Nowoshilow, S., Schloissnig, S., Fei, J.F., Dahl, A., Pang, A.W.C., Pippel, M., Winkler, S., Hastie, A.R., Young, G., Roscito, J.G., Falcon, F., Knapp, D., Powell, S., Cruz, A., Cao, H., Habermann, B., Hiller, M., Tanaka, E.M. & Myers, E.W. (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature, 554, 50-55.
Olmo, E. (1973) Quantitative variations in the nuclear DNA and phylogenesis of the Amphibia. Caryologia, 26, 43-68.
Olmo, E., Gargiulo, G. & Morescalchi, A. (1970) Il contenuto di DNA nucleare di alcuni Anfibi. Boll. Zool., 37, 513-514.
Pan, J., Wang, B.S., Pei, Z.Y., Zhao, W., Gao, J., Mao, J.F. & Wang, X.R. (2015) Optimization of the genotyping-by-sequencing strategy for population genomic analysis in conifers. Mol. Ecol. Res., 15, 711-722.
Peakall, R. & Smouse, P.E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537-2539.
Recknagel, H., Jacobs, A., Herzyk, P. & Elmer, K.R. (2015) Double-digest RAD sequencing using Ion Proton semiconductor platform (ddRADseq-ion) with nonmodel organisms. Mol. Ecol. Res., 15, 1316-1329.
Romano, A., Sindaco, R., Andreone, F., Lecis, R., Edgar, P., Schmidt, B. & Corti, C. (2009) Euproctus platycephalus. The IUCN Red List of Threatened Species 2009: e.T8371A12907837. http://dx.doi.org/10.2305/IUCN.UK.2009.RLTS.T8371A12907837.en. Downloaded on 30 September 2018.
Streicher, J.W., Devitt, T.J., Goldberg, C.S., Malone, J.H., Blackmon, H. & Fujita, M.K. (2014) Diversification and asymmetrical gene flow across time and space: lineage sorting and hybridization in polytypic barking frogs. Mol. Ecol., 23, 3273-3291.
Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S.L., Fischman, D.L. & Waller, R.W. (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783-1786.
Sun, Y.B., Xiong, Z.J., Xiang, X.Y., Liu, S.P., Zhou, W.W., Tu, X.L., Zhong, L., Wang, L., Wu, D.D., Zhang, B.L., Zhu, C.L., Yang, M.M., Chen, H.M., Li, F., Zhou, L., Feng, S.H., Huang, C., Zhang, G.J., Irwin, D., Hillis, D.M., Murphy, R.W., Yang, H.M., Che, J., Wang, J. & Zhang, Y.P. (2015) Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proc. Natl Acad. Sci. USA, 112, E1257-E1262.
Taylor, S.A., Curry, R.L., White, T.A., Ferretti, V. & Lovette, I. (2014a) Spatiotemporally consistent genomic signatures of reproductive isolation in a moving hybrid zone. Evolution, 68, 3066-3081.
Taylor, S.A., White, T.A., Hochachka, W.M., Ferretti, V., Curry, R.L. & Lovette, I. (2014b) Climate-mediated movement of an avian hybrid zone. Curr. Biol., 24, 671-676.
Vignoli, L., Macale, D., Luiselli, L., Lecis, R. & Casula, P. (2016) Are conservation assessments of threatened species reliable? Updated distribution of the Endangered Sardinian newt Euproctus platycephalus and implications for Red List assessments of Italian amphibians. Oryx, 53, 482-488.
Voss, S.R., Kump, D.K., Putta, S., Pauly, N., Reynolds, A., Henry, R., Basa, S., Walker, J.A. & Smith, J.J. (2011) Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes. Genome Res., 21, 1306-1312.
White, T.A., Perkins, S.E., Heckel, G. & Searle, J.B. (2013) Adaptive evolution during an ongoing range expansion: the invasive bank vole (Myodes glareolus) in Ireland. Mol. Ecol., 22, 2971-2985.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 885 | 102 | 8 |
Full Text Views | 54 | 11 | 0 |
PDF Views & Downloads | 66 | 16 | 0 |
Next Generation Sequencing (NGS) and related technologies have revolutionized the field of conservation and population genetics, providing novel tools and the capacity to discover thousands of new Single Nucleotide Polymorphisms (SNPs) for the analysis of population parameters. However, gathering NGS data for organisms with very large genomes, such as amphibians, remains challenging because it is still unclear how the current methods perform. Here, we use the Genotyping-by-Sequencing (GBS) approach to generate SNP data for the genotyping of two amphibian species that are of conservation concern, the Sardinian brook salamander (Euproctus platycephalus) and the Italian stream frog (Rana italica). Both E. platycephalus and R. italica have very large genomes (5.53 Gb and >20 Gb, respectively) so genomic data are not available for either of them. We used 95 individual samples and one Illumina lane for each species, with an additional lane for E. platycephalus. After filtering, we obtained 961 and 854 high-coverage SNPs for E. platycephalus and R. italica, respectively. Our results suggest that GBS can serve as a reliable and cost-effective method for genotyping large amphibian genomes, including non-model species.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 885 | 102 | 8 |
Full Text Views | 54 | 11 | 0 |
PDF Views & Downloads | 66 | 16 | 0 |