Do you want to stay informed about this journal? Click the buttons to subscribe to our alerts.
Anthropogenic modifications of the environment have clear negative impacts on species. These effects may reach a higher magnitude in highly altered habitats, for example in wetlands transformed into rice paddies. This is the case for the amphibian species of the genus Hynobius in the Republic of Korea, which originally breed in slow streams and valleys. However, a comparatively high proportion of the natural breeding sites used by the species in the lowlands has been transformed into rice paddies. Here, we assessed whether anthropogenic modification of wetlands leads to an additional threat to breeding Hynobius spp. in the form of increased vulnerability of their egg clutches to loach predators (Misgurnus species) in such modified habitats. We conducted weekly occurrence surveys at 27 randomly selected sites in the Republic of Korea and recorded the following information: type of site (natural versus agricultural), air temperature, water conductivity, moon phase and predation by Misgurnus sp. Our results reveal, for the first time, cases of predation of Hynobius spp. eggs by Misgurnus loaches. We also show that the risk of predation was higher in agricultural sites in comparison to natural sites. In conclusion, we demonstrate the increased predation risk of Hynobius spp. eggs by Misgurnus sp. at anthropogenically disturbed sites, and thus a new type of threat to Hynobius populations. This new type of threat may, however, be due to expansion of the breeding habitats following human disruptions to landscapes. We therefore call for the development of mitigating measures to wetland modifications.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Axelsson, E., Nyström, P., Sidenmark, J. & Brönmark, C. (1997) Crayfish predation on amphibian eggs and larvae. Amphibia-Reptilia, 18, 217-228. DOI:10.1163/156853897X00107.
Baek, H.J., Lee, M.Y., Lee, H. & Min, M.S. (2011) Mitochondrial DNA data unveil highly divergent populations within the genus Hynobius (Caudata: Hynobiidae) in South Korea. Mol. Cells, 31, 105-112. DOI:10.1007/s10059-011-0014-x.
Beebee, T.J.C. & Griffiths, R.A. (2005) The amphibian decline crisis: a watershed for conservation biology? Biol. Cons., 125, 271-285. DOI:10.1016/j.biocon.2005.04.009.
Borzée, A. & Jang, Y. (2015) Description of a seminatural habitat of the endangered Suweon treefrog, Hyla suweonensis. Anim. Cells Syst., 19, 216-220. DOI:10.1080/19768354.2015.1028442.
Borzée, A., Kim, J.Y., da Cunha, M.A., Lee, D., Sin, E., Oh, S., Yi, Y. & Jang, Y. (2016) Temporal and spatial differentiation in microhabitat use: implications for reproductive isolation and ecological niche specification. Integr. Zool., 11, 375-387. DOI:10.1111/1749-4877.12200.
Borzée, A., Kim, K., Heo, K., Jablonski, P.G. & Jang, Y. (2017) Impact of land reclamation and agricultural water regime on the distribution and conservation status of the endangered Dryophytes suweonensis. Peer, 5, e3872. DOI:10.7717/peerj.3872.
Borzée, A., Heo, K. & Jang, Y. (2018a) Relationship between agro-environmental variables and breeding Hylids in rice paddies. Sci. Rep., 8, 8049. DOI:10.1038/s41598-018-26222-w.
Borzée, A., Kyong, C.N., Kil, H.K. & Jang, Y. (2018b) Impact of water quality on the occurrence of two endangered Korean anurans: Dryophytes suweonensis and Pelophylax chosenicus. Herpetologica, 74, 1-7. DOI:10.1655/Herpetologica-D-17-00011.
Bowne, D.R. & Bowers, M.A. (2004) Interpatch movements in spatially structured populations: a literature review. Landscape Ecol., 19, 1-20. DOI:10.1023/B:LAND.0000018357.45262.b9.
Buxton, V.L. & Sperry, J.H. (2016) Reproductive decisions in anurans: a review of how predation and competition affects the deposition of eggs and tadpoles. BioScience, 67, 26-38. DOI:10.1093/biosci/biw149.
Carr, L.W. (2001) Effect of road traffic on two amphibian species of different vagility. The Journal of Wildlife Management.
Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P. & van den Belt, M. (1997) The value of the world’s ecosystem services and natural capital. Nature, 387, 253-260.
Czech, H.A. & Parsons, K.C. (2002) Agricultural wetlands and waterbirds: a review. Waterbirds, 25, 56-65.
Denton, J. & Beebee, T.J.C. (1991) Palatability of anuran eggs and embryos. Amphibia-Reptilia, 12, 111-112. DOI:10.1163/156853891X00374.
Diamond, J.M. (1996) A-bombs against amphibians. Nature, 383, 386-387. DOI:10.1038/383386a0.
Duellman, W. & Trueb, L. (1986) Biology of Amphibians. McGraw-Hill, New York, USA.
Egea-Serrano, A., Relyea, R.A., Tejedo, M. & Torralva, M. (2012) Understanding of the impact of chemicals on amphibians: a meta-analytic review. Ecol. Evol., 2, 1382-1397. DOI:10.1002/ece3.249.
Fahrig, L., Pedlar, J.H., Pope, S.E., Taylor, P.D. & Wegner, J.F. (1995) Effect of road traffic on amphibian density. Biol. Cons., 73, 177-182. DOI:10.1016/0006-3207(94)00102-V.
Fasola, M. & Ruiz, X. (1996) The value of rice fields as substitutes for natural wetlands for waterbirds in the Mediterranean region. Colon. Waterbirds, 19, 122-128. DOI:10.2307/1521955.
Felton, A., Lindbladh, M., Brunet, J. & Fritz, Ö. (2010) Replacing coniferous monocultures with mixed-species production stands: an assessment of the potential benefits for forest biodiversity in northern Europe. Forest Ecol. Manag., 260, 939-947. DOI:10.1016/j.foreco.2010.06.011.
Gamradt, S.C. & Kats, L.B. (1996) Effect of introduced crayfish and mosquitofish on California newts. Conserv. Biol., 10, 1155-1162. DOI:10.1046/j.1523-1739.1996.10041155.x.
Getzner, M. (2002) Investigating public decisions about protecting wetlands. J. Environ. Manage., 64, 237-246.
Hails, A.J. (1997) Wetlands, Biodiversity and the Ramsar Convention: the Role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity. Bureau de la Convention de Ramsar, Gland, Switzerland.
Han, J., Park, C., Ahn, J., Ahn, G. & Baek, Y. (2015) Identification Guide to Freshwater Fishes of Korea. Nature & Ecology, Seoul, Republic of Korea.
Houlahan, J.E. & Findlay, C.S. (2003) The effects of adjacent land use on wetland amphibian species richness and community composition. Can. J. Fish Aquat. Sci, 60, 1078-1094. DOI:10.1139/f03-095.
Katano, O., Hosoya, K., Iguchi, K., Yamaguchi, M., Aonuma, Y. & Kitano, S. (2003) Species diversity and abundance of freshwater fishes in irrigation ditches around rice fields. Environ. Biol. Fishes, 66, 107-121. DOI:10.1023/A:1023678401886.
Kats, L.B., Petranka, J.W. & Sih, A. (1988) Antipredator defenses and the persistence of amphibian larvae with fishes. Ecology, 69, 1865-1870. DOI:10.2307/1941163.
Laurila, A. & Aho, T. (1997) Do female common frogs choose their breeding habitat to avoid predation on tadpoles? Oikos, 78, 585-591. DOI:10.2307/3545621.
Lee, J.-H. & Park, D. (2016) The Encyclopedia of Korean Amphibians. Checklist of Organisms in Korea 17, Seoul, Republic of Korea.
Lee, J.H., Han, J.-H., Lim, B.J., Park, J.-H., Shin, J.-K. & An, K.-G. (2013) Comparative analysis of fish fauna and community structures before and after the artificial weir construction in the mainstreams and tributaries of Yeongsan River watershed. Korea J. Ecol. Environ., 46, 103-115.
Licht, L.E. (1968) Unpalatability and toxicity of toad eggs. Herpetologica, 24, 93-98.
Machado, I.F. & Maltchik, L. (2010) Can management practices in rice fields contribute to amphibian conservation in southern Brazilian wetlands? Aquat. Conserv., 20, 39-46. DOI:10.1002/aqc.1070.
Macias, D.A., Groffen, J., Jang, Y. & Borzée, A. (2018) Rana coreana (Korean brown frog) and R. uenoi (Ueno’s brown frog). Hibernaculum. Herpetol. Rev. Nat. Hist. Notes, 49, 121-122.
Magnusson, W.E. & Hero, J.-M. (1991) Predation and the evolution of complex oviposition behaviour in Amazon rainforest frogs. Oecologia, 86, 310-318. DOI:10.1007/BF00317595.
Majecki, J. & Majecka, K. (1996) Predation by Oligotricha striata caddis larvae on amphibian eggs: effects of a high quality food on growth rate. Aquat. Ecol., 30, 21-25. DOI:10.1007/BF02092144.
Matsui, M. & Wenge, Z. (2008) Hynobius leechii. In: The IUCN Red List of Threatened Species. IUCN, Gland, Switzerland.
Min, M.-S., Baek, H., Song, J.-Y., Chang, M. & Poyarkov, N. Jr. (2016) A new species of salamander of the genus Hynobius (Amphibia, Caudata, Hynobiidae) from South Korea. Zootaxa, 4169, 475-503. DOI:10.11646/zootaxa.4169.3.4.
Mitsch, W.J. & Gosselink, J.G. (2007) Wetlands. John Wiley & Sons, Inc, Hoboken, NJ, USA.
Mosher, H., Fuhrman, F., Buchwald, H. & Fischer, H.G. (1964) Tarichatoxin-tetrodotoxin: a potent neurotoxin. Science, 144, 1100-1110. DOI:10.1126/science.144.3622.1100.
Murphy, T.D. (1961) Predation on eggs of the salamander, Ambystoma maculatum, by caddisfly larvae. Copeia, 1961, 495-496.
Natuhara, Y. (2013) Ecosystem services by paddy fields as substitutes of natural wetlands in Japan. Ecol. Eng., 56, 97-106. DOI:10.1016/j.ecoleng.2012.04.026.
Nicholls, C.I. & Altieri, M.A. (2013) Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev., 33, 257-274. DOI:10.1007/s13593-012-0092-y.
Park, D. & Park, S.-R. (2000) Multiple insemination and reproductive biology of Hynobius leechii. J. Herpetol., 34, 594-598. DOI:10.2307/1565276.
Pavelka, L.A., Kim, Y.H. & Mosher, H.S. (1977) Tetrodotoxin and tetrodotoxin-like compounds from the eggs of the Costa Rican frog, Atelopus chiriquiensis. Toxicon, 15, 135-139. DOI:10.1016/0041-0101(77)90032-0.
Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., Raven, P.H., Roberts, C.M. & Sexton, J.O. (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 987-997. DOI:10.1126/science.1246752.
Reshetnikov, A. (2008) Does rotan Perccottus glenii (Perciformes: Odontobutidae) eat the eggs of fish and amphibians? J. Ichthyol., 48, 336-344. DOI:10.1134/S0032945208040061.
Rybicki, J. & Hanski, I. (2013) Species-area relationships and extinctions caused by habitat loss and fragmentation. Ecol. Lett., 16, 27-38. DOI:10.1111/ele.12065.
Semlitsch, R.D. (1988) Allotopic distribution of two salamanders: effects of fish predation and competitive interactions. Copeia, 2, 290-298. DOI:10.2307/1445868.
Sparreboom, M. (2014) Salamanders of the Old World: the Salamanders of Europe, Asia and Northern Africa. Brill, Trento, Italy.
Stuart, S. (2008) Hynobius yangi. In: The IUCN Red List of Threatened Species. IUCN, Gland, Switzerland.
Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S., Fischman, D.L. & Waller, R.W. (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783-1786. DOI:10.1126/science.1103538.
Tilman, D., May, R.M., Lehman, C.L. & Nowak, M.A. (1994) Habitat destruction and the extinction debt. Nature, 371, 65-66. DOI:10.1038/371065a0.
Turzańska, K. & Chachulska, J. (2016) Arion slugs as nest predators of small passerine species — a review. J. Avian Biol., 48, 455-458. DOI:10.1111/jav.01189.
US Library of Congress (2015) South Korea: Agriculture. Federal Research Division of the Library of Congress, Washington, DC, USA. http://countrystudies.us/south-korea/52.htm.
Wake, D.B. (2012) Facing extinction in real time. Science, 335, 1052-1053. DOI:10.1126/science.1218364.
Ward, D. & Sexton, O.J. (1981) Anti-predator role of salamander egg membranes. Copeia, 1981, 724-726. DOI:10.2307/1444586.
Yang, S.Y., Kim, J.B., Min, M.S., Suh, J.H. & Kang, Y.J. (2000) Monograph of Korean Amphibia. Academy Book, Seoul, Korea.
Yoo, S.-H., Choi, J.-Y., Nam, W.-H. & Hong, E. (2012) Analysis of design water requirement of paddy rice using frequency analysis affected by climate change in South Korea. Agric. Water Manage., 112, 33-42. DOI:10.1016/j.agwat.2012.06.002.
Yoo, S.-H., Choi, J.-Y., Lee, S.-H. & Kim, T. (2014) Estimating water footprint of paddy rice in Korea. Paddy Water Environ., 12, 43-54. DOI:10.1007/s10333-013-0358-2.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 386 | 81 | 6 |
Full Text Views | 41 | 19 | 4 |
PDF Views & Downloads | 30 | 10 | 4 |
Anthropogenic modifications of the environment have clear negative impacts on species. These effects may reach a higher magnitude in highly altered habitats, for example in wetlands transformed into rice paddies. This is the case for the amphibian species of the genus Hynobius in the Republic of Korea, which originally breed in slow streams and valleys. However, a comparatively high proportion of the natural breeding sites used by the species in the lowlands has been transformed into rice paddies. Here, we assessed whether anthropogenic modification of wetlands leads to an additional threat to breeding Hynobius spp. in the form of increased vulnerability of their egg clutches to loach predators (Misgurnus species) in such modified habitats. We conducted weekly occurrence surveys at 27 randomly selected sites in the Republic of Korea and recorded the following information: type of site (natural versus agricultural), air temperature, water conductivity, moon phase and predation by Misgurnus sp. Our results reveal, for the first time, cases of predation of Hynobius spp. eggs by Misgurnus loaches. We also show that the risk of predation was higher in agricultural sites in comparison to natural sites. In conclusion, we demonstrate the increased predation risk of Hynobius spp. eggs by Misgurnus sp. at anthropogenically disturbed sites, and thus a new type of threat to Hynobius populations. This new type of threat may, however, be due to expansion of the breeding habitats following human disruptions to landscapes. We therefore call for the development of mitigating measures to wetland modifications.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 386 | 81 | 6 |
Full Text Views | 41 | 19 | 4 |
PDF Views & Downloads | 30 | 10 | 4 |