Sexual size and shape dimorphism (SSD and SShD) are understudied phenomena in millipedes. In the present study, we investigated both kinds of sexual dimorphism in some morphological traits, as well as whether shape of the morphological traits varied more than their size. Three julidan species, viz., Pachyiulus hungaricus (Karsch, 1881), Megaphyllum unilineatum (C.L. Koch, 1838), and M. bosniense (Verhoeff, 1897), were used for these purposes. By means of traditional and geometric morphometrics, we found that SSD exists in linear measurements of the tested morphological traits, as well as SShD of the legs in all analysed species. Also, SSD of antennal centroid size was detected in P. hungaricus and M. unilineatum, in addition to SShD of antennae in P. hungaricus and M. bosniense. Our results indicate that morphological intersexual differences are species-specific and that the shape of some morphological traits varies more than the size of centroids of the same structures.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Abouheif, E. & Fairbairn, D.J. (1997) A comparative analysis of allometry for sexual size dimorphism: assessing Rensch’s rule. Am. Nat., 149, 540-562.
Abràmoff, M.D., Magalhães, P.J. & Ram, S.J. (2004) Image processing with ImageJ. Biophotonics Int., 11, 36-42.
Adolph, S.C. & Geber, M.A. (1995) Mate-guarding, mating success and body size in the tropical millipede Nyssodesmus python (Peters) (Polydesmida: Platyrhacidae). Southwest. Nat., 40, 56-61.
Akkari, N. & Enghoff, H. (2011) Copulatory-copulatory male succession and male slenderness in Ommatoiulus sempervirilis n. sp., a new insular millipede from Tunisia (Diplopoda: Julida: Julidae). J. Zool. Syst. Evol. Res., 49, 285-291.
Andersson, M. (1994) Sexual Selection. Princeton University Press, Princeton, NJ, USA.
Antić, D.Ž., Ćurčić, B.P.M., Tomić, V.T., Ćurčić, S.B., Stojanović, D.Z., Dudić, B.D. & Makarov, S.E. (2013) One hundred millipede species in Serbia (Arthropoda: Myriapoda: Diplopoda). Arch. Biol. Sci., 65, 1559-1578.
Baker, G.H. (1978) The post-embryonic development and life history of the millipede, Ommatoiulus moreletii (Diplopoda: Julidae), introduced in south-eastern Australia. J. Zool., 186, 209-228.
Berns, C.M. (2013) The evolution of sexual dimorphism: understanding mechanisms of sexual shape differences. In: H. Moriyama (Ed.) Sexual Dimorphism, pp. 1-16. InTech, Rijeka, Croatia.
Bhakat, S., Bhakat, A. & Mukhopadhyaya, M.C. (1989) The reproductive biology and post-embryonic development of Streptogonopus phipsoni (Diplopoda: Polydesmoidea). Pedobiologia, 33, 37-47.
Bidau, C.J. & Martí, D.A. (2008) Contrasting patterns of sexual size dimorphism in the grasshoppers Dichroplus vittatus and D. pratensis (Acrididae, Melanoplinae). J. Orthoptera Res., 17, 201-211.
Bidau, C.J., Taffarel, A. & Castillo, E.R. (2016) Breaking the rule: multiple patterns of scaling of sexual size dimorphism with body size in orthopteroid insects. Rev. Soc. Entomol. Arg., 75, 11-36.
Blanckenhorn, W.U., Dixon, A.F.G., Fairbairn, D.J., Foellmer, M.W., Gibert, P., van der Linde, K., Meier, R., Nylin, S., Pitnick, S., Schoff, C., Signorelli, M., Teder, T. & Wiklund, C. (2007) Proximate causes of Rensch’s rule: does sexual size dimorphism in arthropods result from sex differences in development time? Am. Nat., 169, 245-257.
Cárcamo, H.A., Abe, T.A., Prescott, C.E., Holl, F.B. & Chanway, C.P. (2000) Influence of millipedes on litter decomposition, N mineralization, and microbial communities in a coastal forest in British Columbia, Canada. Can J Forest Res., 30, 817-826.
Cheng, R.C. & Kuntner, M. (2015) Disentangling the size and shape components of sexual dimorphism. Evol. Biol., 42, 223-234.
Cooper, M.I. (2014) Sexual size dimorphism and corroboration of Rensch’s rule in Chersastus millipedes (Diplopoda: Pachybolidae). J. Entomol. Zool. Stud., 2, 264-266.
Cooper, M.I. (2016) Heavier-shorter-wider females in the millipede Centrobolus inscriptus attems (Spirobolida, Trigoniulidae). J. Entomol. Zool. Stud., 4, 509-510.
Cooper, M.I. (2017) Relative sexual size dimorphism in Centrobolus fulgidus (Lawrence) compared to 18 congenerics. J. Entomol. Zool. Stud., 5, 77-79.
Cooper, M.I. (2018a) Centrobolus size dimorphism breaks Rensch’s rule. Arthropods, 7, 48-52.
Cooper, M.I. (2018b) Trigoniulid size dimorphism breaks Rensch. J. Entomol. Zool. Stud., 6, 1232-1234.
Cooper, M.I. (2018c) A review of studies on the fire millipede genus Centrobolus (Diplopoda: Trigoniulidae). J. Entomol. Zool. Stud., 6, 126-129.
Couret, T. & David, J.F. (1985) Recherche des stades de maturité sexuelle chez le myriapode Polyzonium germanicum Brandt, 1831 (Diplopoda, Polyzoniida). Rev. Ecol. Biol. Sol., 22, 247-258.
Cuervo, J.J. & Møller, A.P. (1999) Evolutionary rates of secondary sexual and non-sexual characters among birds. Evol. Ecol., 13, 283-303.
Enghoff, H. (1982) The millipede genus Cylindroiulus on Madeira – an insular species swarm (Diplopoda, Julida: Julidae). Entomol. Scand. Supplement, 18, 1-142.
Enghoff, H. (1992) The size of a millipede. Ber. Nat.-Med. Verein Innsbruck, Suppl., 10, 47-56.
Glazier, D.S., Clusella-Trullas, S. & Terblanche, J.S. (2016) Sexual dimorphism and physiological correlates of horn length in a south African isopod crustacean. J. Zool., 300, 99-110.
Head, G. (1995) Selection on fecundity and variation in the degree of sexual size dimorphism among spider species (class Araneae). Evolution, 49, 776-781.
Heath, J., Bocock, K.L. & Mountford, M.D. (1974) The life history of the millipede Glomeris marginata (villers) in north-west England. Symp. Zool. Soc. Lond., 32, 433-462.
Hopkin, S.P. & Read, H.J. (1992) The Biology of Millipedes. Oxford University Press, Oxford, UK.
Ilić, B.S., Mitić, B.M. & Makarov, S.E. (2017) Sexual dimorphism in Apfelbeckia insculpta (L. Koch, 1867) (Myriapoda: Diplopoda: Callipodida). Arch. Biol. Sci., 69, 23-33.
Jonsson, B. & Jonsson, N. (2015) Sexual size dimorphism in anadromous brown trout Salmo trutta. J. Fish Biol., 87, 187-193.
Jovanović, Z., Pavković-Lučić, S., Ilić, B., Vujić, V., Dudić, B., Makarov, S., Lučić, L. & Tomić, V. (2017) Mating behaviour and its relationship with morphological features in the millipede Pachyiulus hungaricus (Karsch, 1881) (Myriapoda, Diplopoda, Julida). Turk. J. Zool., 41, 1010-1023.
Kamath, A. (2016) Variation in display behavior, ornament morphology, sexual size dimorphism, and habitat structure in the fan-throated lizard (Sitana, Agamidae). J. Herpetol., 50, 394-403.
Kelly, C.D. (2015) Sexual size and shape dimorphism and allometric scaling patterns in head traits in the New Zealand common gecko Woodworthia maculatus. Zoology, 118, 248-254.
Klingenberg, C.P. (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour., 11, 353-357. Available at http://www.flywings.org.uk/morphoj_page.htm.
Liao, W.B., Liu, W.C. & Merilä, J. (2015) Andrew meets Rensch: sexual size dimorphism and the inverse of Rensch’s rule in Andrew’s toad (Bufo andrewsi). Oecologia, 177, 389-399.
Maderbacher, M., Bauer, C., Herler, J., Postl, L., Makasa, L. & Sturmbauer, C. (2008) Assessment of traditional versus geometric morphometrics for discriminating populations of the Tropheus moorii species complex (Teleostei: Cichlidae), a Lake Tanganyika model for allopatric speciation. J. Zool. Syst. Evol. Res., 46, 153-161.
Makarov, S.E., Ćurčić, B.P.M., Tomić, V.T. & Legakis, A. (2004) The Diplopods of Serbia, Montenegro, and the Republic of Macedonia. Monographs, Volume IX. Institute of Zoology, Faculty of Biology, University of Belgrade; Hellenic Zoological Society, Committee for Karst and Speleology; Serbian Academy of Sciences and Arts, Belgrade, Serbia.
Manton, S.M. (1954) The evolution of arthropodan locomotory mechanisms. – Part 4. The structure, habits and evolution of the Diplopoda. J. Linn. Soc. Zool., 42, 299-368.
Markow, T.A. (Ed.) (1994) Developmental Instability: Its Origins and Evolsutionary Implications. Contemporary Issues in Genetics and Evolution. Springer Science + Business Media, Dordrecht, The Netherlands.
Mauriès, J.P. (1997) Is the family Atopogestidae based on a case of teratology or a periodomorphic stage? (Diplopoda, Spirostreptida, Odontopygoidea). Entomol. Scand. Suppl., 51, 139-147.
Miličić, D., Ðorđević, S., Tomović, Lj. & Pavković-Lučić, S. (2013) Sexual dimorphism in Branchipus schaefferi Fischer, 1834 (Anostraca: Branchiopoda: Crustacea) from Serbia. North-West J. Zool., 9, 425-428.
Minelli, A. & Michalik, P. (2015) Diplopoda – reproduction. In: A. Minelli (Ed.) The Myriapoda, vol. 2, Treatise on Zoology – Anatomy, Taxonomy, Biology, pp. 237-265. Brill, Leiden, The Netherlands.
Morbey, Y.E. (2002) Protandry models and their application to salmon. Behav. Ecol., 13, 337-343.
R Core Team (2013) Version 3.0.2. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.r-project.org/.
Rodríguez, R.L., Cramer, J.D., Schmitt, C.A., Gaetano, T.J., Grobler, J.P., Freimer, N.B. & Turner, T.R. (2015) The static allometry of sexual and non-sexual traits in vervet monkeys. Biol. J. Linn. Soc. Lond., 114, 527-537.
Rohlf, F.J. (2008) TpsDig, Version 2.12. Stony Brook, NY, USA: SUNY at Stony Brook. Available at http://life.bio.sunysb.edu/morph/soft-dataacq.html.
Rohner, P.T., Pitnick, S., Blanckenhorn, W.U., Snook, R.R., Bächli, G. & Lüpold, S. (2018) Interrelations of global macroecological patterns in wing and thorax size, sexual size dimorphism, and range size of the Drosophilidae. Ecography, 41, 1707-1717.
Rowe, M. (2010) Copulation, mating system and sexual dimorphism in an Australian millipede, Cladethosoma clarum. Aust. J. Zool., 58, 127-132.
Sheets, H.D. (2003) IMP – Integrated Morphometrics Package. Buffalo, NY, USA: Department of Physics, Canisius College.
Sierwald, P. & Bond, J.E. (2007) Current status of the myriapod class Diplopoda (millipedes): taxonomic diversity and phylogeny. Annu Rev Entomol., 52, 401-420.
Siomava, N., Wimmer, E.A. & Posnien, N. (2016) Size relationships of different body parts in the three dipteran species Drosophila melanogaster, Ceratitis capitata and Musca domestica. Dev. Genes Evol., 226, 245-256.
Stillwell, R.C., Blanckenhorn, W.U., Teder, T., Davidowitz, G. & Fox, C.W. (2010) Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Annu. Rev. Entomol., 55, 227-245.
VandenSpiegel, D. & Golovatch, S.I. (2015) A new millipede of the family Ammodesmidae found in central Africa (Diplopoda, Polydesmida). Zookeys, 483, 1-7. DOI:10.3897/zookeys.483.9150.
Vohland, K. & Adis, J. (1999) Life history of Pycnotropis tida (Diplopoda: Polydesmida: Aphelidesmidae) from seasonally inundated forests in Amazonia (Brazil and Peru). Pedobiologia, 43, 231-244.
Vujić, V., Ilić, B., Jovanović, Z., Pavković-Lučić, S., Selaković, S., Tomić, V. & Lučić, L. (2018) Sexual behaviour and morphological variation in the millipede Megaphyllum bosniense (Verhoeff, 1897). Contrib. Zool., 87, 133-148.
Watson, N.L. & Simmons, L.W. (2010) Male and female secondary sexual traits show different patterns of quantitative genetic and environmental variation in the horned beetle Onthophagus sagittarius. J. Evol. Biol., 23, 2397-2402.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 752 | 108 | 16 |
Full Text Views | 22 | 14 | 1 |
PDF Views & Downloads | 20 | 8 | 0 |
Sexual size and shape dimorphism (SSD and SShD) are understudied phenomena in millipedes. In the present study, we investigated both kinds of sexual dimorphism in some morphological traits, as well as whether shape of the morphological traits varied more than their size. Three julidan species, viz., Pachyiulus hungaricus (Karsch, 1881), Megaphyllum unilineatum (C.L. Koch, 1838), and M. bosniense (Verhoeff, 1897), were used for these purposes. By means of traditional and geometric morphometrics, we found that SSD exists in linear measurements of the tested morphological traits, as well as SShD of the legs in all analysed species. Also, SSD of antennal centroid size was detected in P. hungaricus and M. unilineatum, in addition to SShD of antennae in P. hungaricus and M. bosniense. Our results indicate that morphological intersexual differences are species-specific and that the shape of some morphological traits varies more than the size of centroids of the same structures.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 752 | 108 | 16 |
Full Text Views | 22 | 14 | 1 |
PDF Views & Downloads | 20 | 8 | 0 |