Evolution of vertebrate brain size is associated with sexual traits

In: Animal Biology
View More View Less
  • 1 Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
  • 2 Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, 637009, China
  • 3 Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, China

Purchase instant access (PDF download and unlimited online access):

€25.00$30.00

Abstract

The expensive tissue hypothesis predicts a trade-off between investments in the brain and other energetically costly organs due to the costs associated with their growth and maintenance within the finite energy resources available. However, few studies address the strength of relationships between brain size and investments in precopulatory (ornaments and armaments) and postcopulatory (testes and ejaculates) sexual traits. Here, in a broad comparative study, we tested the prediction that the relationship between brain size and investment in sexual traits differs among taxa relative to the importance of sperm competition within them. We found that brain size was negatively correlated with sexual size dimorphism (SSD) in anurans and primates, and it tended to decrease with SSD in ungulates and cetaceans. However, brain size did not covary significantly with armaments (e.g., canine length, horn, antler, and muscle mass). Brain size was not correlated with postcopulatory sexual traits (testes and ejaculates). The intensity of covariance between brain size and precopulatory sexual traits decreased with increasing relative testis size.

  • Aiello, L.C. & Wheeler, P. (1995) The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr. Anthropol., 36, 199-221. DOI:10.1086/204350.

    • Search Google Scholar
    • Export Citation
  • Andersson, M. (1994) Sexual Selection. Princeton University Press, Princeton, NJ, USA.

  • Andersson, M. & Norberg, R.Å. (1981) Evolution of reversed sexual size dimorphism and role partitioning among predatory birds, with a size scaling of flight performance. Biol. J. Linn. Soc., 15, 105-130. DOI:10.1111/j.1095-8312.1981.tb00752.x.

    • Search Google Scholar
    • Export Citation
  • Arnqvist, G. & Rowe, L. (2015) The shape of preference functions and what shapes them: a comment on Edward. Behav. Ecol., 26, 325. DOI:10.1093/beheco/aru20.

    • Search Google Scholar
    • Export Citation
  • Boogert, N.J., Fawcett, T.W. & Lefebvre, L. (2011) Mate choice for cognitive traits: a review of the evidence in nonhuman vertebrates. Behav. Ecol, 22, 447-459. DOI:10.1093/beheco/arq173.

    • Search Google Scholar
    • Export Citation
  • Buzatto, B.A., Thyer, E.M., Roberts, J.D. & Simmons, L.W. (2017) Sperm competition and the evolution of precopulatory weapons: testis size and amplexus position, but not arm strength, affect fertilization success in a chorusing frog. Evolution, 71, 329-341. DOI:10.1111/evo.13136.

    • Search Google Scholar
    • Export Citation
  • Darwin, C. (1871) The Descent of Man, and Selection in Relation to Sex. John Murray, London, UK.

  • Drummond, AJ., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol., 29, 1969-1973. DOI:10.1093/molbev/mss075.

    • Search Google Scholar
    • Export Citation
  • Emlen, D.J. (2001) Costs and the diversification of exaggerated animal structures. Science, 291, 1534-1536. DOI:10.1126/science.1056607.

    • Search Google Scholar
    • Export Citation
  • Fitzpatrick, J.L., Almbro, M., Gonzalez-Voyer, A., Hamada, S., Pennington, C., Scanlan, J. & Kolm, N. (2012) Sexual selection uncouples the evolution of brain and body size in pinnipeds. J. Evol. Biol., 25, 1321-1330. DOI:10.1111/j.1420-9101.2012.02520.x.

    • Search Google Scholar
    • Export Citation
  • Freckleton, R.P., Harvey, P.H. & Pagel, M. (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat., 160, 712-726.

    • Search Google Scholar
    • Export Citation
  • Garamszegi, L.Z., Eens, M., Hurtrez-Boussès, S. & Møller, A. (2005) Testosterone, testes size, and mating success in birds: a comparative study. Horm. Behav., 47, 389-409. DOI:10.1016/j.yhbeh.2004.11.008.

    • Search Google Scholar
    • Export Citation
  • García-Peña, C., García-Fabela, L.C., Gutiérrez-Robledo, L.M., García-González, J.J., Arango-Lopera, V.E. & Pérez-Zepeda, M.U. (2013) Handgrip strength predicts functional decline at discharge in hospitalized male elderly: a hospital cohort study. PloS One, 8, e69849. DOI:10.1371/journal.pone.0069849.

    • Search Google Scholar
    • Export Citation
  • González-Lagos, C., Sol, D. & Reader, S.M. (2010) Large-brained mammals live longer. J. Evol. Biol., 23, 1064-1074. DOI:10.1111/j.1420-9101.2010.01976.x.

    • Search Google Scholar
    • Export Citation
  • Healy, S.D. & Rowe, C. (2006) A critique of comparative studies of brain size. Proc. R. Soc. B Biol. Sci., 274, 453-464. DOI:10.1098/rspb.2006.3748.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., Mai, C.L., Liao, W.B. & Kotrschal, A. (2020) Body mass variation is negatively associated with brain size – evidence for the fat-brain trade-off in anurans. Evolution. DOI:10.1111/evo.13991.

    • Search Google Scholar
    • Export Citation
  • Isler, K. & van Schaik, C. (2006) Costs of encephalization: the energy trade-off hypothesis tested on birds. J. Hum. Evol., 51, 228-243. DOI:10.1016/j.jhevol.2006.03.006.

    • Search Google Scholar
    • Export Citation
  • Jennions, M.D. & Petrie, M. (2010) Why do females mate multiply? A review of the genetic benefits. Biol. Rev., 75, 21-64. DOI:10.1017/S0006323199005423.

    • Search Google Scholar
    • Export Citation
  • Jerison, H. (1973) Evolution of the Brain and Intelligence. Academic Press, New York, NY, USA.

  • Jones, K.E. & MacLarnon, A.M. (2004) Affording larger brains: testing hypotheses of mammalian brain evolution on bats. Am. Nat., 164, E20-E31. DOI:10.1086/421334.

    • Search Google Scholar
    • Export Citation
  • Kotrschal, A., Rogell, B., Bundsen, A., Svensson, B., Zajitschek, S., Brännström, I., Immler, S., Maklakov, A.A. & Kolm, N. (2013) Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol., 23, 168-171. DOI:10.1016/j.cub.2012.11.058.

    • Search Google Scholar
    • Export Citation
  • Lefebvre, L., Whittle, P., Lascaris, E. & Finkelstein, A. (1997) Feeding innovations and forebrain size in birds. Anim. Behav., 53, 549-560. DOI:10.1006/anbe.1996.0330.

    • Search Google Scholar
    • Export Citation
  • Lemaître, J.-F., Ramm, S.A., Barton, R. & Stockley, P. (2009) Sperm competition and brain size evolution in mammals. J. Evol. Biol., 22, 2215-2221. DOI:10.1111/j.1420-9101.2009.01837.x.

    • Search Google Scholar
    • Export Citation
  • Liao, W.B., Lou, S.L., Zeng, Y. & Kotrschal, A. (2016) Large brains, small guts: the expensive tissue hypothesis supported within anurans. Am. Nat., 188, 693-700.

    • Search Google Scholar
    • Export Citation
  • Liao, W.B., Huang, Y., Zeng, Y., Zhong, M.J., Luo, Y. & Lüpold, S. (2018) Ejaculate evolution in external fertilizers: influenced by sperm competition or sperm limitation? Evolution, 72, 4-17. DOI:10.1111/evo.13372.

    • Search Google Scholar
    • Export Citation
  • Lindenfors, P., Tullberg, B.S. & Biuw, M. (2002) Phylogenetic analyses of sexual selection and sexual size dimorphism in pinnipeds. Behav. Ecol. Sociobiol., 52, 188-193. DOI:10.1007/s00265-002-0507-x.

    • Search Google Scholar
    • Export Citation
  • Lüpold, S., Linz, G.M., Rivers, J.W., Westneat, D.F. & Birkhead, T.R. (2009) Sperm competition selects beyond relative testes size in birds. Evolution, 63, 391-402. DOI:10.1111/j.1558-5646.2008.00571.x.

    • Search Google Scholar
    • Export Citation
  • Lüpold, S., Tomkins, J.L., Simmons, L.W. & Fitzpatrick, J.L. (2014) Female monopolization mediates the relationship between pre-and postcopulatory sexual traits. Nat. Communicat., 5, 3184. DOI:10.1038/ncomms4184.

    • Search Google Scholar
    • Export Citation
  • Lüpold, S., Jin, L. & Liao, W.B. (2017) Population density and structure drive differential investment in pre- and postmating sexual traits in frogs. Evolution, 71, 1686-1699. DOI:10.1111/evo.13246.

    • Search Google Scholar
    • Export Citation
  • Mai, C.L. & Liao, W.B. (2019) Brain size evolution in anurans: a review. Anim. Biol., 69, 265-279. DOI:10.1163/15707563-00001074.

  • Mai, C.L., Liao, W.B., Lüpold, S. & Kotrschal, A. (2020) Relative brain size is predicted by the intensity of intrasexual competition in frogs. Am. Nat. DOI:10.1086/709465.

    • Search Google Scholar
    • Export Citation
  • Mink, J.W., Blumenschine, R.J. & Adams, D.B. (1981) Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am. J. Physiol., 241, R203-R212. DOI:10.1152/ajpregu.1981.241.3.R203.

    • Search Google Scholar
    • Export Citation
  • Olsson, M., Madsen, T. & Shine, R. (1997) Is sperm really so cheap? Costs of reproduction in male adders, Vipera berus. Proc. R. Soc. B Biol. Sci., 264, 455-459. DOI:10.1098/rspb.1997.0065.

    • Search Google Scholar
    • Export Citation
  • Parker, G.A. & Begon, M.E. (1993) Sperm competition games: sperm size and sperm number under gametic control. Proc. R. Soc. B Biol. Sci., 253, 255-262. DOI:10.1098/rspb.1993.0111.

    • Search Google Scholar
    • Export Citation
  • Pérez I de Lanuza, G., Carretero, M.A. & Font, E. (2017) Intensity of male-male competition predicts morph diversity in a color polymorphic lizard. Evolution, 71, 1832-1840. DOI:10.1111/evo.13256.

    • Search Google Scholar
    • Export Citation
  • Pischedda, A. & Chippindale, A.K. (2017) Direct benefits of choosing a high-fitness mate can offset the indirect costs associated with intralocus sexual conflict. Evolution, 71, 1710-1718. DOI:10.1111/evo.13240.

    • Search Google Scholar
    • Export Citation
  • Pitnick, S., Jones, K.E. & Wilkinson, G.S. (2006) Mating system and brain size in bats. Proc. R. Soc. B Biol. Sci., 273, 719-724. DOI:10.1098/rspb.2005.3367.

    • Search Google Scholar
    • Export Citation
  • Prenter, J., Elwood, R.W. & Montgomery, W.I. (1999) Sexual size dimorphism and reproductive investment by female spiders: a comparative analysis. Evolution, 53, 1987-1994. DOI:10.1111/j.1558-5646.1999.tb04580.x.

    • Search Google Scholar
    • Export Citation
  • R Core Team (2016) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://cran.r-project.org.

    • Search Google Scholar
    • Export Citation
  • Raichle, M.E. & Gusnard, D.A. (2002) Appraising the brain’s energy budget. Proc. Natl Acad. Sci. USA, 99, 10237-10239. DOI:10.1073/pnas.172399499.

    • Search Google Scholar
    • Export Citation
  • Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. (2014) Tracer v1.6. Available at http://beast.bio.ed.ac.uk/Tracer (Accessed 2017-06-12).

  • Ramm, S.A. & Stockley, P. (2010) Sperm competition and sperm length influence the rate of mammalian spermatogenesis. Biol. Lett., 6, 219-221. DOI:10.1098/rsbl.2009.0635.

    • Search Google Scholar
    • Export Citation
  • Reader, S.M. & Laland, K.N. (2002) Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl Acad. Sci. USA, 99, 4436-4441. DOI:10.1073/pnas.062041299.

    • Search Google Scholar
    • Export Citation
  • Rice, W.R. & Holland, B. (1997) The enemies within: intergenomic conflict, interlocus contest evolution (ICE), and the intraspecific Red Queen. Behav. Ecol. Sociobiol., 41, 1-10. DOI:10.1007/s002650050357.

    • Search Google Scholar
    • Export Citation
  • Schillaci, M.A. (2006) Sexual selection and the evolution of brain size in primates. PloS One, 1, e62. DOI:10.1371/journal.pone.0000062.

    • Search Google Scholar
    • Export Citation
  • Selander, R.K. (1966) Sexual dimorphism and differential niche utilization in birds. Condor, 68, 113-151.

  • Seyfarth, R.M. & Cheney, D.L. (2002) What are big brains for? Proc. Natl Acad. Sci. USA, 99, 4141-4142. DOI:10.1073/pnas.082105099.

  • Street, S.E., Navarrete, A.F., Reader, S.M. & Laland, K.N. (2017) Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates. Proc. Natl Acad. Sci. USA, 114, 7908-7914. DOI:10.1073/pnas.1620734114.

    • Search Google Scholar
    • Export Citation
  • Tanner, J.C., Ward, J.L., Shaw, R.G. & Bee, M.A. (2017) Multivariate phenotypic selection on a complex sexual signal. Evolution, 71, 1742-1754. DOI:10.1111/evo.13264.

    • Search Google Scholar
    • Export Citation
  • Thom, M.D., Harrington, L.A. & Macdonald, D.W. (2004) Why are American mink sexually dimorphic? A role for niche separation. Oikos, 105, 525-535. DOI:10.1111/j.0030-1299.2004.12830.x.

    • Search Google Scholar
    • Export Citation
  • Trumbo, S.T. & Robinson, G.E. (2004) Nutrition, hormones and life history in burying beetles. J. Insect Physiol., 50, 383-391. DOI:10.1016/j.jinsphys.2004.01.008.

    • Search Google Scholar
    • Export Citation
  • Yu, X., Zhong, M.J., Li, D.Y., Jin, L., Liao, W.B. & Kotrschal, A. (2018) Large-brained frogs mature later and live longer. Evolution, 72, 1174-1183. DOI:10.1111/evo.13478.

    • Search Google Scholar
    • Export Citation
  • Zeng, Y., Lou, S.L., Liao, W.B. & Jehle, R. (2014) Evolution of sperm morphology in anurans: insights into the roles of mating system and spawning location. BMC Evol. Biol., 14, 104. DOI:10.1186/1471-2148-14-104.

    • Search Google Scholar
    • Export Citation
  • Zhong, M., Yu, X. & Liao, W. (2018) A review for life-history traits variation in frogs especially for anurans in China. Asian Herpetol. Res., 9, 165-174. DOI:10.16373/j.cnki.ahr.180052.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 151 151 121
Full Text Views 3 3 3
PDF Downloads 3 3 3