Abiotic and biotic factors play an essential role in the structuring of natural communities. Aquatic ecosystems have complex interaction networks, encompassing predator/prey relationships and structural support. Among aquatic organisms, the order Odonata is a model group for understanding those relationships since they can be both predators and prey. Our hypotheses were that Zygoptera are (i) influenced positively by Ephemeroptera, Plecoptera and Trichoptera (EPT) and the Habitat Integrity Index (HII), and negatively by fish and macrophytes; and (ii) Anisoptera are affected positively by EPT and macrophytes, and negatively by fish and HII. We found that Zygoptera were affected by the fish functional trophic groups, while Anisoptera were affected by macrophytes, EPT, fish and HII. Macrophytes affected anisopterans positively because they provide perching sites for adults. The results for EPT and HII may be related since these organisms are also sensitive to environmental changes. More open areas have lower HII values and the negative relationship with Anisoptera may be explained by physiological constraints. The negative relationship between EPT and Anisoptera could be explained by the low occurrence of EPT in open sites, which are the sites that were highly rich in Anisoptera. Finally, the dominance of specific functional trophic groups of fish influences Odonata suborders in different ways. In conclusion, the results show the importance of ecological interactions for Odonata in Amazonian streams in both direct and indirect ways.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Baird, J.M. & May, M.L. (2003) Fights at the dinner table: agonistic behaviour in Pachydiplax longipennis (Odonata: Libellulidae) at feeding sites. J. Insect Behav., 16, 189-216. DOI:10.1023/A:1023963717997.
Barreto, A.P. & Aranha, J.M.R. (2006) Alimentação de quatro espécies de Characiformes de um riacho da Floresta Atlântica, Guaraqueçaba, Paraná, Brasil. Rev. Bras. Zool, 23, 779-788. DOI:10.1590/S0101-81752006000300023.
Bo, T., Fenoglio, S., López-Rodríguez, M.J. & Tierno de Figueroa, J.M. (2012) Trophic behavior of the dragonfly Cordulegaster boltoni (Insecta: Odonata) in small creeks in NW Italy. Entomol. Fenn., 22, 255-261. DOI:10.33338/ef.84553.
Brasil, L.S., Lima, E.L., Spigoloni, Z.A., Ribeiro-Brasil, R.G. & Juen, L. (2020) The habitat integrity index and aquatic insect communities in tropical streams: a meta-analysis. Ecol. Indic., 116, 106495. DOI:10.1016/j.ecolind.2020.106495.
Brejão, G.L., Gerhard, P. & Zuanon, J. (2013) Functional trophic composition of the ichthyofauna of forest streams in eastern Brazilian Amazon. Neotrop. Ichthyol., 11, 361-373.
Britski, H.A., Silimon, K.Z.S. & Lopes, B.S. (2007) Peixes do Pantanal: Manual de Identificação. Embrapa, Brasília, Brazil.
Burnham, K.P. & Anderson, D.R. (2002) Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach. 2nd Edition. Springer, New York, NY, USA.
Calvão, L.B., Juen, L., Oliveira-Junior, J.M.B., Batista, J.D. & De Marco Jr, P. (2018) Land use modifies Odonata diversity in streams of the Brazilian Cerrado. J Insect. Conserv., 22, 675-685. DOI:10.1007/s10841-018-0093-5.
Carvalho, F.G., de Oliveira Roque, F., Barbosa, L., de Assis Montag, L.F. & Juen, L. (2018) Oil palm plantation is not a suitable environment for most forest specialist species of Odonata in Amazonia. Anim. Conserv., 21, 526-533. DOI:10.1111/acv.12427.
Casatti, L., Langeani, F. & Castro, R.M.C. (2001) Peixes de riacho do Parque Estadual Morro do Diabo, Bacia do Alto Rio Paraná, SP. Biota Neotrop., 1, 1-15. DOI:10.1590/S1676-06032001000100005.
Casatti, L., Mendes, H.F. & Ferreira, K.M. (2003) Aquatic macrophytes as feeding site for small fishes in the Rosana Reservoir, Paranapanema River, southeastern Brazil. Braz. J. Biol., 63, 213-222. DOI:10.1590/S1519-69842003000200006.
Corbet, P.S. (1962) A Biology of Dragonflies. H.F. & G. Witherby, London, UK.
Corbet, P.S. (1999) Dragonflies: Behavior and Ecology of Odonata. Comstock Publishing Associates, Ithaca, NY, USA.
Corbet, P.S. & May, M.L. (2008) Fliers and perchers among Odonata: dichotomy or multidimensional continuum? A provisional reappraisal. Int. J. Odonatol., 11, 155-171. DOI:10.1080/13887890.2008.9748320.
Cunha, E.R., Thomaz, S.M., Mormul, R.P., Cafofo, E.G. & Bonaldo, A.B. (2012) Macrophyte structural complexity influences spider assemblage attributes in wetlands. Wetlands, 32, 369-377. DOI:10.1007/s13157-012-0272-1.
De Marco Jr., P. & Latini, A.O. (1998) Estrutura de guildas e riqueza em espécies em uma comunidade de larvas de Anisoptera (Odonata). In: J.L. Nessimian & A.L. Carvalho (Eds) Ecologia de Insetos Aquáticos, pp. 101-112. PP G-UFRJ, Rio de Janeiro, Brazil.
De Marco Jr., P., Latini, A.O. & Resende, D.C. (2005) Thermoregulatory constraints on behavior: patterns in a Neotropical dragonfly assemblage. Neotrop. Entomol., 34, 155-162. DOI:10.1590/S1519-566X2005000200002.
De Marco Jr., P., Batista, J.D. & Cabette, H.S.R. (2015) Community assembly of adult odonates in tropical streams: an ecophysiological hypothesis. PloS ONE, 10. DOI:10.1371/journal.pone.0123023.
Degabriele, G. (2013) An overview of the dragonflies and damselflies of the Maltese Islands (Central Mediterranean) (Odonata). Bull. Entomol. Soc. Malta, 6, 5-127.
Dibble, E.D. & Thomaz, S.M. (2009) Use of fractal dimension to access habitat complexity and its influence on dominant invertebrates inhabiting tropical and temperate macrophytes. J. Freshw. Ecol., 24, 93-102. DOI:10.1080/02705060.2009.9664269.
Dolný, A., Harabiš, F., Bárta, D., Lhota, S. & Drozd, P. (2012) Aquatic insects indicate terrestrial habitat degradation: changes in taxonomical structure and functional diversity of dragonflies in tropical rainforest of east Kalimantan. Trop. Zool., 25, 141-157. DOI:10.1080/03946975.2012.717480.
Domínguez, E. & Fernández, H.R. (2009) Macroinvertebrados Bentonicos Sudamericanos: Sistemática y Biología. Fundación Miguel Lillo, San Miguel de Tucumán, Argentina.
Domínguez, E., Molineri, C., Pescador, M.L., Hubbard, M.D. & Nieto, C. (2006) Ephemeroptera of South America. Pensoft Publishers, Sofia, Bulgaria.
Fukami, T. (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst., 46, 1-23. DOI:10.1146/annurev-ecolsys-110411-160340.
Garrison, R.W., von Ellenrieder, N. & Louton, J.A. (2006) Dragonfly Genera of the New World: an Illustrated and Annotated Key to the Anisoptera. The Johns Hopkins University Press, Baltimore, MD, USA.
Géry, J. (1977) Characoids of the World. TFH Publications, Neptune City, NJ, USA.
Goldstein, R.M. & Simon, T.P. (1998) Toward a united definition of guild structure for feeding ecology of North American freshwater fishes. In: T.P. Simon (Ed.) Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities, pp. 123-202. CRC Press, Boca Raton, FL, USA.
Göthe, E., Angeler, D.G., Gottschalk, S., Löfgren, S. & Sandin, L. (2013) The influence of environmental, biotic and spatial factors on diatom metacommunity structure in Swedish headwater streams. PloS ONE, 8, e72237. DOI:10.1371/journal.pone.0072237.
Hamada, N. & Silva, J.O. (2014) Ordem Plecoptera. In: N. Hamada, J.L. Nessimian & R.B. Querino (Eds) Insetos Aquáticos na Amazônia Brasileira: Taxonomia, Biologia e Ecologia, pp. 283-288. Editora do INPA, Manaus, Brazil.
Heckman, C.W. (2008) Encyclopedia of South American Aquatic Insects: Odonata – Zygoptera. Springer Verlag, New York, NY, USA.
Iwai, N., Akasaka, M., Kadoya, T., Ishida, S., Aoki, T., Higuchi, S. & Takamura, N. (2017) Examination of the link between life stages uncovered the mechanisms by which habitat characteristics affect odonates. Ecosphere, 8, e01930. DOI:10.1002/ecs2.1930.
Johansson, F. & Brodin, T. (2003) Effects of fish predators and abiotic factors on dragonfly community structure on dragonfly community structure. J. Freshw. Ecol., 18, 415-423. DOI:10.1080/02705060.2003.9663977.
Juen, L., Cabette, H.S.R. & De Marco Jr., P. (2007) Odonata assemblage structure in relation to basin and aquatic habitat structure in Pantanal wetlands. Hydrobiologia, 579, 125-134. DOI:10.1007/s10750-006-0395-6.
Knorp, N.E. & Dorn, N.J. (2016) Mosquito fish predation and aquatic vegetation determine emergence patterns of dragonfly assemblages. Freshw. Sci., 35, 114-125. DOI:10.1086/684678.
Kovalenko, K.E., Thomaz, S.M. & Warfe, D.M. (2012) Habitat complexity: approaches and future directions. Hydrobiologia, 685, 1-17. DOI:10.1007/s10750-011-0974-z.
Kullander, S.O. (1986) Cichlid Fishes of the Amazon River Drainage of Peru. Swedish Museum of Natural History, Stockholm, Sweden.
Legendre, P. & Legendre, L. (2012) Numerical Ecology. 3rd Edition. Elsevier, Amsterdam, The Netherlands.
Lencioni, F.A.A. (2005) The Damselflies of Brazil: an Illustrated Guide: I. The Non Coenagrionidae Families. All Print Editora, São Paulo, Brazil.
Lencioni, F.A.A. (2006) The Damselflies of Brazil: an Illustrated Guide: II. Coenagrionidae Families. All Print Editora, São Paulo, SP, Brazil.
Lorenzi, H. (2008) Plantas Daninhas do Brasil: Terrestres, Aquáticas, Parasitas e Tóxicas. 4th Edition. Instituto Plantarum, Nova Odessa, SP, Brazil.
May, M.L. (1976) Thermoregulation in adaptation to temperature in dragonflies (Odonata; Anisoptera). Ecol. Monogr., 46, 1-32. DOI:10.2307/1942392.
McGuffin, M.A., Baker, R.L. & Forbes, M.R. (2006) Detection and avoidance of fish predators by adult Enallagma damselflies. J. Insect. Behav., 19, 77-91. DOI:10.1007/s10905-005-9013-0.
Mendes, T.P., Oliveira-Junior, J.M.B., Cabette, H.S.R., Batista, J.D. & Juen, L. (2017) Congruence and the biomonitoring of aquatic ecosystems: are odonate larvae or adults the most effective for the evaluation of impacts. Neotrop. Entomol., 46, 631-641. DOI:10.1007/s13744-017-0503-5.
Miguel, T.B., Oliveira-Junior, J.M.B., Ligeiro, R. & Juen, L. (2017) Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecol. Indic., 81, 555-566. DOI:10.1016/j.ecolind.2017.06.010.
Monteiro-Júnior, C.S., Juen, L. & Hamada, N. (2015) Analysis of urban impacts on aquatic habitats in the central Amazon basin: adult odonates as bioindicators of environmental quality. Ecol. Indic., 48, 303-311. DOI:10.1016/j.ecolind.2014.08.021.
Moral, R.A., Hinde, J. & Demétrio, C.G.B. (2017) Half-normal plots and overdispersed models in R: the hnp package. J. Stat. Softw., 81, 1-23. DOI:10.18637/jss.v081.i10.
Nessimian, J.L., Venticinque, E.M., Zuanon, J., De Marco Jr., P., Gordo, M., Fidelis, L., Bastista, J.D. & Juen, L. (2008) Land use, habitat integrity, and aquatic insect assemblages in central Amazonian streams. Hydrobiologia, 614, 117. DOI:10.1007/s10750-008-9441-x.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P. & McGlinn, D. (2019) vegan: Community Ecology Package. Available at https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed on 10 May 2019.
Oliveira-Junior, J.M.B. & Juen, L. (2019) The Zygoptera/Anisoptera ratio (Insecta: Odonata): a new tool for habitat alterations assessment in Amazonian streams. Neotrop. Entomol., 48, 552-560. DOI:10.1007/s13744-019-00672-x.
Oliveira-Junior, J.M.B., De Marco Jr., P., Dias-Silva, K., Leitão, R.P., Leal, C.G., Pompeu, P.S., Gardner, T.A., Hughes, R.M. & Juen, L. (2017) Effects of human disturbance and riparian conditions on Odonata (Insecta) assemblages in eastern Amazon basin streams. Limnologica, 66, 31-39. DOI:10.1016/j.limno.2017.04.007.
Paradis, E., Claude, J. & Strimmer, K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290. DOI:10.1093/bioinformatics/btg412.
Pereira, L.R., Cabette, H.S.R. & Juen, L. (2012) Trichoptera as bioindicators of habitat integrity in the Pindaíba river basin, Mato Grosso (central Brazil). Ann. Limnol. Int. J. Lim., 48, 295-302. DOI:10.1051/limn/2012018.
Pes, A.M., Santos, A.P.M., Barcelos-Silva, P. & Camargos, L.D. (2014) Ordem Trichoptera. In: N. Hamada, J.L. Nessimian & R.B. Querino (Eds) Insetos Aquáticos na Amazônia Brasileira: Taxonomia, Biologia e Ecologia, pp. 391-434. Editora do INPA, Manaus, Brazil.
Petersen, I., Winterbottom, J.H., Orton, S., Friberg, N., Hildrew, A.G., Spiers, D.C. & Gurney, W.S.C. (1999) Emergence and lateral dispersal of adult Plecoptera and Trichoptera from Broadstone Stream, U.K. Freshw. Biol., 42, 401-416. DOI:10.1046/j.1365-2427.1999.00466.x.
Pierre, J.I. & Kovalenko, K.E. (2014) Effect of habitat complexity attributes on species richness. Ecosphere, 5, 1-10. DOI:10.1890/ES13-00323.1.
Pott, V.J. & Pott, A. (2000) Plantas Aquáticas do Pantanal. Embrapa Comunicação para Transferência de Tecnologia, Brasília, Brazil.
Pritchard, G. (1964) The prey of adult dragonflies in northern Alberta. Can. Entomol., 96, 821-825. DOI:10.4039/Ent96821-6.
R Core Team (2019) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/. Accessed on 10 May 2019.
Raizer, J. & Amaral, M.E.C. (2001) Does the structural complexity of aquatic macrophytes explain the diversity of associated spider assemblages? J Arachnol, 29, 227-237. DOI:10.1636/0161-8202(2001)029[0227:DTSCOA]2.0.CO;2.
Remsburg, A.J. & Turner, M.G. (2009) Aquatic and terrestrial drivers of dragonfly (Odonata) assemblages within and among north-temperate lakes. J. N. Am. Benthol. Soc., 28, 44-56. DOI:10.1899/08-004.1.
Resende, D.C. & De Marco Jr., P. (2010) First description of reproductive behavior of the Amazonian damselfly Chalcopteryx rutilans (Rambur) (Odonata, Polythoridae). Rev. Bras. Entomol., 54, 436-440. DOI:10.1590/S0085-56262010000300013.
Rodrigues, M.E., de Oliveira Roque, F., Quintero, J.M.O., de Castro Pena, J.C., de Sousa, D.C. & De Marco Jr, P. (2016) Nonlinear responses in damselfly community along a gradient of habitat loss in a savanna landscape. Biol. Conserv., 194, 113-120. DOI:10.1016/j.biocon.2015.12.001.
Sabino, J. & Zuanon, J. (1998) A stream fish assemblage in central Amazonia: distribution, activity patterns and feeding behavior. Ichthyol. Explor. Freshw., 8, 201-210.
Salles, F.F. & Domínguez, E. (2012) Systematics and phylogeny of Ulmeritus-Ulmeritoides revisited (Ephemeroptera: Leptophlebiidae). Zootaxa, 3571, 49-65.
Salles, F.F. & Lima, M.M. (2014) Chave Interativa para Identificacão dos Gêneros de Leptophlebiidae (Ephemeroptera) Registrados para o Brasil. Available at http://www.ephemeroptera.com.br. Accessed on 20 November 2017.
Salles, F.F., Nascimento, J.M.C., Cruz, P.V., Boldrini, R. & Belmont, E.L.L. (2014) Ordem Ephemeroptera. In: N. Hamada, J.L. Nessimian & R.B. Querino (Eds) Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia, pp. 193-216. Editora do INPA, Manaus.
Sazima, I. (1986) Similarities in feeding behavior between some marine and freshwater fishes in two tropical communities. J. Fish Biol., 29, 53-65. DOI:10.1111/j.1095-8649.1986.tb04926.x.
Seidu, I., Nsor, C.A., Danquah, E. & Lancaster, L.T. (2018) Odonata assemblages along an anthropogenic disturbance gradient in Ghana’s eastern region. Odonatologica, 47, 73-100. DOI:10.5281/zenodo.1239947.
Shimano, Y., Cardoso, M. & Juen, L. (2018) Ecological studies of mayflies (Insecta, Ephemeroptera): can sampling effort be reduced without losing essential taxonomic and ecological information? Acta Amaz., 48, 137-145. DOI:10.1590/1809-4392201700583.
Simaika, J.P. & Samways, M.J. (2008) Valuing dragonflies as service providers. In: A. Córdoba-Aguilar (Ed.) Dragonflies and Damselflies: Study Models in Ecological and Evolutionary Research, pp. 109-123. Oxford University Press, Oxford, UK.
Souza, H.M.L., Cabette, H.S.R. & Juen, L. (2011) Baetidae (Insecta, Ephemeroptera) em córregos do Cerrado mato-grossense sob diferentes níveis de preservação ambiental. Iheringia Ser. Zool., 101, 181-190. DOI:10.1590/S0073-47212011000200005.
Stoks, R. & Córdoba-Aguillar, A. (2011) Evolutionary ecology of Odonata: a complex life cycle perspective. Annu. Rev. Entomol., 57, 249-265. DOI:10.1146/annurev-ento-120710-100557.
Stoks, R. & McPeek, M.A. (2003) Predators and life histories shape Lestes damselfly assemblages along a freshwater habitat gradient. Ecology, 84, 1576-1587. DOI:10.1890/0012-9658(2003)084[1576:PALHSL]2.0.CO;2.
Strahler, A.N. (1957) Quantitative analysis of watershed geomorphology. Eos (Washington DC), 38, 913-920. DOI:10.1029/TR038i006p00913.
Thomaz, S.M., Dibble, E.D., Evangelista, L.R., Higuti, J. & Bini, L.M. (2008) Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshw. Biol., 53, 358-367. DOI:10.1111/j.1365-2427.2007.01898.x.
Venables, W.N. & Ripley, B.D. (2002) Modern Applied Statistics With S. Springer, New York, NY, USA.
Wittwer, T., Sahlén, G. & Suhling, F. (2010) Does one community shape the other? Dragonflies and fish in Swedish lakes. Insect Conserv. Diver., 3, 124-133.
Zeni, J.O. & Casatti, L. (2014) The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia, 726, 259-270. DOI:10.1007/s10750-013-1772-6.
Zuanon, J., Mendonça, F.P., Espírito Santo, H.M.V., Dias, M.S., Galuch, A.V. & Akama, A. (2015) Guia de Peixes da Reserva Adolpho Ducke, Amazônia Central. Editora INPA, Manaus, Brazil.
Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A. & Smith, G.M. (2009) Mixed Effects Models and Extensions in Ecology With R. Springer, New York, NY, USA. DOI:10.1007/978-0-387-87458-6.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1721 | 364 | 82 |
Full Text Views | 47 | 8 | 0 |
PDF Views & Downloads | 59 | 14 | 0 |
Abiotic and biotic factors play an essential role in the structuring of natural communities. Aquatic ecosystems have complex interaction networks, encompassing predator/prey relationships and structural support. Among aquatic organisms, the order Odonata is a model group for understanding those relationships since they can be both predators and prey. Our hypotheses were that Zygoptera are (i) influenced positively by Ephemeroptera, Plecoptera and Trichoptera (EPT) and the Habitat Integrity Index (HII), and negatively by fish and macrophytes; and (ii) Anisoptera are affected positively by EPT and macrophytes, and negatively by fish and HII. We found that Zygoptera were affected by the fish functional trophic groups, while Anisoptera were affected by macrophytes, EPT, fish and HII. Macrophytes affected anisopterans positively because they provide perching sites for adults. The results for EPT and HII may be related since these organisms are also sensitive to environmental changes. More open areas have lower HII values and the negative relationship with Anisoptera may be explained by physiological constraints. The negative relationship between EPT and Anisoptera could be explained by the low occurrence of EPT in open sites, which are the sites that were highly rich in Anisoptera. Finally, the dominance of specific functional trophic groups of fish influences Odonata suborders in different ways. In conclusion, the results show the importance of ecological interactions for Odonata in Amazonian streams in both direct and indirect ways.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1721 | 364 | 82 |
Full Text Views | 47 | 8 | 0 |
PDF Views & Downloads | 59 | 14 | 0 |