We investigated age structure, age at sexual maturity, lifespan, growth and survival rate and adult life expectancy (as demographic life-history traits) as well as body size of two Darevskia derjugini (Artvin lizard) populations from different altitudes, using skeletochronology. Our findings indicated that age upon attaining sexual maturity was two or three years in the low-altitude population (Fındıklı) while it was three years in the high-altitude population (Murgul) for both sexes. The maximum longevity was seven years in the high-elevation site while it was six years in the low-elevation site. As reported for many lizards, we found a significant positive relationship between age and body size within each sex of Artvin lizard at both altitudes. High- and low-altitude populations did not differ in age structure, survival rates, adult life expectancy and body size. Rather than the effect of altitude, which is hard to compare without replication of other low and high altitude populations, the fact that these two populations have similar growth rates and the similarity of local conditions (food availability and predator density) may indicate similarity between the two regions.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Adolph, S.C. & Porter, W.P. (1993) Temperature, activity and lizard life history. Am. Nat., 142, 273-295. DOI:10.1086/285538.
Altunışık, A. (2017) Life history traits in a population of Hemidacylus turcicus (Turkish gecko). Sakarya Univ. J. Sci., 21, 516-521. DOI:10.16984/saufenbilder.291938.
Altunışık, A. (2018) The first demographic data and body size of the southern banded newt, Ommatotriton vittatus (Caudata: Salamandridae). Acta Herpetol., 13, 13-19. DOI:10.13128/Acta_Herpetol-21171.
Altunışık, A. & Eksilmez, H. (2018) Demographic life history traits in a population of a critically endangered species, Darevskia dryada (Darevsky & Tuniyev, 1997). Anim. Biol, 68, 27-37. DOI:10.1163/15707563-17000092.
Altunışık, A., Kalaycı, T.E., Uysal, İ., Tosunoğlu, M. & Özdemir, N. (2017) Age determination in two populations of the snake-eyed lizard (Ophisops elegans) (Sauria: Lacertidae) at different altitudes. J. Anatol. Environ. Sci., 2, 11-14.
Andersson, M. (1994) Sexual Selection. Princeton University Press, Princeton, NJ, USA.
Ballinger, R.E. (1977) Reproductive strategies: food availability as a source of proximal variation in a lizard. Ecology, 58, 628-635. DOI:10.2307/1939012.
Ballinger, R.E. (1979) Intraspecific variation in demography and life history of the lizard, Sceloporus jarrovi, along an altitudinal gradient in southeastern Arizona. Ecology, 60, 901-909. DOI:10.2307/1936858.
Beşer, N., Ilgaz, Ç., Kumlutaş, Y., Avcı, A., Candan, K. & Üzüm, N. (2019) Age structure and body size of a critically endangered species, Acanthodactylus harranensis (Squamata: Lacertidae) and its demography. Anim. Biol., 69, 421-431. DOI:10.1163/15707563-20191067.
Beşer, N., Ilgaz, Ç., Kumlutaş, Y., Candan, K., Güçlü, Ö. & Üzüm, N. (2020) Age and growth in two populations of Danford’s lizard, Anatololacerta danfordi (Günther, 1876), from the eastern Mediterranean. Turk. J. Zool., 44, 173-180. DOI:10.3906/zoo-1909-39.
Bülbül, U., Kurnaz, M., Eroğlu, A.I., Koç, H. & Kutrup, B. (2016) Age and growth of the red-bellied lizard, Darevskia parvula. Anim. Biol., 66, 81-95. DOI:10.1163/15707563-00002489.
Cabezas-Cartes, F., Boretto, J.M. & Ibargüengoytía, N.R. (2015) Age, growth and life-history parameters of an endemic vulnerable lizard from Patagonia, Argentina. Herpetol. J., 25, 215-224.
Caley, M.J. & Schwarzkopf, L. (2004) Complex growth rate evolution in a latitudinally widespread species. Evolution, 58, 862-869. DOI:10.1111/j.0014-3820.2004.tb00417.x.
Castanet, J. & Baez, M. (1991) Adaptation and evolution in Gallotia lizards from the Canary Islands: age, growth, maturity and longevity. Amphibia-Reptilia, 12, 81-102. DOI:10.1163/156853891X00356.
Comas, M., Reguera, S., Zamora-Camacho, F.J. & Moreno-Rueda, G. (2019) Age structure of a lizard along an elevational gradient reveals nonlinear lifespan patterns with altitude. Current Zoology, 66, 373-382. DOI:10.1093/cz/zoz063.
Conover, D.O., Duffy, T.A. & Hice, L.A. (2009) The covariance between genetic and environmental influences across ecological gradients: reassessing the evolutionary significance of countergradient and cogradient variation. Ann. N.Y. Acad. Sci., 1168, 100-129. DOI:10.1111/j.1749-6632.2009.04575.x.
Cox, R.M., Butler, M.A. & John-Alder, H.B. (2007) The evolution of sexual size dimorphism in reptiles. In: D.J. Fairbairn, W.U. Blanckenhorn & T. Székely (Eds) Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism, pp. 38-49. Oxford University Press, Oxford, UK. DOI:10.1093/acprof:oso/9780199208784.003.0005.
Cruz-Elizalde, R. & Ramírez-Bautista, A. (2016) Reproductive cycles and reproductive strategies among populations of the rose-bellied lizard Sceloporus variabilis (Squamata: Phrynosomatidae) from central Mexico. Ecol. Evol., 6, 1753-1768. DOI:10.1002/ece3.1998.
Cruz-Elizalde, R., Ramírez-Bautista, A., Pacheco, L.F.R., Lozano, A. & Rodríguez-Romero, F. de J. (2020) Sexual dimorphism in size and shape among populations of the lizard Sceloporus variabilis (Squamata: Phrynosomatidae). Zoology, 149, 125781. DOI:10.1016/j.zool.2020.125781.
Dunham, A.E. & Miles, D.B. (1985) Patterns of covariation in life history traits of squamate reptiles: the effects of size and phylogeny reconsidered. Am. Nat., 126, 231-257.
Dunham, A.E., Miles, D.B. & Reznik, D.N. (1988) Life history patterns in squamate reptiles. In: C. Gans & F.H. Pough (Eds) Biology of the Reptilia, Vol. 16, pp. 441-522. Academic Press, London, UK.
Eroğlu, A.İ., Bülbül, U., Kurnaz, M. & Odabaş, Y. (2018) Age and growth of the common wall lizard, Podarcis muralis (Laurenti, 1768). Anim. Biol., 68, 147-159. DOI:10.1163/15707563-17000019.
Fitch, H.S. (1981) Sexual size differences in reptiles. Misc. Publ. Univ. Kans. Mus. Nat. Hist., 70, 1-72.
Gadsden, H. & Castañeda, G. (2013) Life history of the marbled whiptail lizard Aspidoscelis marmorata from the central Chihuahuan Desert, Mexico. Acta Herpetol., 8, 81-91.
Gibbons, M.M. & McCarthy, T.K. (1983) Age determination of frogs and toads (Amphibia, Anura) from north-western Europe. Zool. Scr., 12, 145-151. DOI:10.1111/j.1463-6409.1983.tb00559.x.
Guarino, F.M., Di Gia, I. & Sindaco, R. (2010) Age and growth of the sand lizards (Lacerta agilis) from a high Alpine population of north-western Italy. Acta Herpetol., 5, 23-29.
Gutiérrez, J.A., Piantoni, C. & Ibargüengoytía, N.R. (2013) Altitudinal effects on life history parameters in populations of Liolaemus pictus argentinus (Sauria: Liolaemidae). Acta Herpetol., 8, 9-17.
Halliday, T.R. & Verrell, P.A. (1988) Body size and age in amphibians and reptiles. J. Herpetol., 22, 253-265. DOI:10.2307/1564148.
In den Bosch, H.A.J. & Bout, R.G. (1998) Relationships between maternal size, egg size, clutch size, and hatchling size in European lacertid lizards. J. Herpetol., 32, 410-417. DOI:10.2307/1565456.
Iraeta, P., Monasterio, C., Salvador, A. & Díaz, J.A. (2006) Mediterranean hatchling lizards grow faster at higher altitude: a reciprocal transplant experiment. Funct. Ecol., 20, 865-872.
IUCN (2020) The IUCN red list of threatened species. 2017.2. Available at https://www.iucnredlist.org/species/164576/114550064 (Accessed 10 June 2020).
John-Alder, H.B. & Cox, R.M. (2007) The development of sexual size dimorphism in lizards: testosterone as a bipotential growth regulator. In: D.J. Fairbairn, W.U. Blanckenhorn & T. Székely (Eds) Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism, pp. 195-204. Oxford University Press, Oxford, UK. DOI:10.1093/acprof:oso/9780199208784.003.0022.
Kidov, A.A., Kovrina, E.G., Timoshina, A.L., Baksheyeva, A.A., Matushkina, K.A., Blinova, S.A. & Afrin, K.A. (2014) Breeding of the forest artvin lizard Darevskia derjugini sylvatica (Bartenjev et Rjesnikowa, 1931) in the Malaya Laba river valley (Northwestern Caucasus). Curr. Stud. Herpetol., 14, 103-109.
Kurnaz, M., Bülbül, U., Eroğlu, A.İ., Uzun, F., Koç, H. & Kutrup, B. (2018) Age and growth of the Artvin Lizard, Darevskia derjugini (Nıkolsky, 1898), in Turkey. Herpetozoa, 30, 147-158.
Le Galliard, J.F., Marquis, O. & Massot, M. (2010) Cohort variation, climate effects and population dynamics in a short-lived lizard. J. Anim. Ecol., 79, 1296-1307. DOI:10.1111/j.1365-2656.2010.01732.x.
Liao, W.B., Luo, Y., Lou, S.L., Lu, D. & Jehle, R. (2016) Geographic variation in life-history traits: growth season affects age structure, egg size and clutch size in Andrew’s toad (Bufo andrewsi). Front Zool., 13, 6. DOI:10.1186/s12983-016-0138-0.
Lovich, J.E. & Gibbons, J.W. (1992) A review of techniques for quantifying sexual size dimorphism. Growth Dev. Aging, 56, 269-281.
Mesquita, D.O. & Colli, G.R. (2010) Life history patterns in South American tropical lizards. In: O.H. Gallegos, F.R.M. Cruz & J.F.M. Sánchez (Eds) Reproducción en Reptiles: Morfología, Ecología y Evolución, pp. 45-71. Universidad Autónoma del Estado de México, México.
Mesquita, D.O., Faria, R.G., Colli, G.R., Vitt, L.J. & Pianka, E.R. (2016) Lizard life-history strategies. Austral Ecol., 41, 1-5.
Mugabo, M., Marquis, O., Perret, S. & Le Galliard, J.F. (2010) Immediate and delayed life history effects caused by food deprivation early in life in a short-lived lizard. J. Evol. Biol., 23, 1886-1898. DOI:10.1111/j.1420-9101.2010.02052.x.
Orlova, W.F. & Bischoff, W. (1984) Lacerta derjugini Nikolsky, 1898 – Artwiner Eidechse. In: W. Böhme (Ed.) Handbuch der Reptilien und Amphibien Europas, Band 2/I Echsen ii: Lacerta, pp. 239-254. Aula-Verlag, Wiesbaden, Germany.
Orlova, W.F. & Smirina, E.M. (1981) Wozrastnaja struktura populjacii artwinskoj jascericy (Lacerta derjugini Nik.) na Sewernom Kawkaze. In: İ.S. Darevsky (Ed.) Woprosy Gerpetologii, pp. 97. Nauka Press, Leningrad, Russia.
Orlova, W.F. & Smirina, E.M. (1983) Opredelenije wozrasta artwinskoj jaščericy Lacerta derjugini Nik. w Prirodnoj populjacii. Biol. Nauki, 9, 53-57.
Pal, A., Swain, M.M. & Rath, S. (2009) Long bone histology and skeletochronology in a tropical Indian lizard, Sitana ponticeriana (Sauria: Agamidae). Curr. Herpetol., 28, 13-18. DOI:10.3105/018.028.0102.
Piantoni, C., Cussac, V. & Ibargüengoytía, N. (2006) Age and growth of the Patagonian lizard Phymaturus patagonicus. Amphibia- Reptilia, 27, 385-392. DOI:10.1163/156853806778189981.
Ramírez-Bautista, A., Stephenson, B.P., Serrano Muñoz, C., Cruz-Elizalde, R. & Hernández-Salinas, U. (2013) Reproduction and sexual dimorphism in two populations of the polymorphic spiny lizard Sceloporus minor from Hidalgo, México. Acta Zool., 95, 397-408. DOI:10.1111/azo.12037.
Ramírez-Bautista, A., Luría-Manzano, R., Cruz-Elizalde, R., Pavón, N.P. & Wilson, L.D. (2015) Variation in reproduction and sexual dimorphism in the long-tailed spiny lizard, Sceloporus siniferus, from the southern Pacific coast of Mexico. Salamandra, 51, 73-82.
Ramírez-Bautista, A., Lozano, A., Hernández-Salinas, U. & Cruz-Elizalde, R. (2016a) Female reproductive characteristics among populations of the oviparous lizard Sceloporus aeneus (Squamata: Phrynosomatidae) from central Mexico. Herpetologica, 72, 196-201. DOI:10.1655/Herpetologica-D-15-00020.1.
Ramírez-Bautista, A., Hernández-Salinas, U. & Zamora-Abrego, J.G. (2016b) Growth ecology of the tree lizard Urosaurus bicarinatus (Squamata: Phrynosomatidae), in a tropical dry forest of the Chamela Region, Mexico. Anim. Biol., 66, 189-199. DOI:10.1163/15707563-00002497.
Robson, D.S. & Chapman, D.G. (1961) Catch curves and mortality rates. Trans. Am. Fish. Soc., 90, 181-189. DOI:10.1577/1548-8659(1961)90[181:CCAMR]2.0.CO;2.
Roff, D.A. (1992) The Evolution of Life Histories: Theory and Analysis. Chapman and Hall, New York, NY, USA.
Roitberg, E.S. (2007) Variation in sexual size dimorphism within a widespread lizard species. In: D.J. Fairbairn, W.U. Blackenhorn & T. Székely (Eds) Sex, Size, and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism, pp. 143-217. Oxford University Press, Oxford, UK. DOI:10.1093/acprof:oso/9780199208784.003.0016.
Roitberg, E.S. & Smirina, E.M. (2006a) Adult body length and sexual size dimorphism in Lacerta agilis boemica (Reptilia, Lacertidae): between-year and interlocality variation. In: C. Corti, P. Lo Cascio & M. Biaggini (Eds) Mainland and Insular Lacertid Lizards: a Mediterranean Perspective, pp. 175-188. Firenze University Press, Florence, Italy.
Roitberg, E.S. & Smirina, E.M. (2006b) Age, body size and growth of Lacerta agilis boemica and L. strigata: a comparative study of two closely related lizard species based on skeletochronology. Herpetol. J., 16, 133-148.
Ryabinina, N.L., Bannikova, A.A., Kosushkin, S.A., Ciobanu, D.G., Milto, K.D., Tuniyev, B.S., Orlova, V.F., Grechko, V.V. & Darevsky, I.S. (2002) Estimation of the subspecific level of differentiation in Caucasian lizards of the genus Darevskia (syn. “Lacerta saxicola complex, ” Lacertidae, Sauria) using genome DNA markers. Russ. J. Herpetol., 9, 185-194.
Seber, G.A.F. (1973) The Estimation of Animal Abundance and Related Parameters. Hafner Press, New York, NY, USA.
Smirina, E.M. (1994) Age determination and longevity in amphibians. Gerontology, 40, 133-146. DOI:10.1159/000213583.
Stearns, S.C. (1984) The effects of size and phylogeny on patterns of covariation in the life history traits of lizards and snakes. Am. Nat., 123, 56-72. DOI:10.1086/284186.
Stearns, S.C. (1992) The Evolution of Life Histories. Oxford University Press, London, UK.
Tinkle, D.W. (1969) The concept of reproductive effort and its relation to the evolution of life histories of lizards. Am. Nat., 103, 501-516.
Tinkle, D.W., Wilbur, H.M. & Tilley, S.G. (1970) Evolutionary strategies in lizard reproduction. Evolution, 24, 55-74. DOI:10.2307/2406714.
Tomašević Kolarov, N., Ljubisavljević, K., Polović, L., Džukić, G. & Kalezić, M.L. (2010) The body size, age structure and growth pattern of the endemic Balkan Mosor rock lizard (Dinarolacerta mosorensis Kolombatović, 1886). Acta Zool. Acad. Sci. Hung., 56, 55-71.
Torres Barragán, C.A., Hernández Salinas, U. & Ramírez-Bautista, A. (2020) Do growth rate and survival differ between undisturbed and disturbed environments for Sceloporus spinosus Wiegmann, 1828 (Squamata: Phrynosomatidae) from Oaxaca, Mexico. Amphib. Reptile Conserv., 14, 43-54.
Tuniyev, S.B. & Ostrovskikh, S.V. (2006) Intraspecific taxonomy and geographical variation of Darevskia derjugini (Nikolsky, 1898) (Reptilia: Sauria) in the north-western part of its habitat. Mod. Herpetol., 56, 71-92.
Vitt, L.J. & Caldwell, J.P. (2009) Herpetology, an Introductory Biology of Amphibians and Reptiles. Academic Press, Burlington, MA, USA.
Yıldırım, E., Kumlutaş, Y., Candan, K. & Ilgaz, Ç. (2019) Age structure and body size of the endangered species Darevskia bendimahiensis (Schmidtler, Eiselt & Darevsky, 1994) from eastern Turkey (Squamata, Sauria, Lacertidae). Herpetozoa, 32, 159-163. DOI:10.3897/herpetozoa.32.e37094.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 7112 | 1530 | 47 |
Full Text Views | 27 | 2 | 0 |
PDF Views & Downloads | 26 | 6 | 0 |
We investigated age structure, age at sexual maturity, lifespan, growth and survival rate and adult life expectancy (as demographic life-history traits) as well as body size of two Darevskia derjugini (Artvin lizard) populations from different altitudes, using skeletochronology. Our findings indicated that age upon attaining sexual maturity was two or three years in the low-altitude population (Fındıklı) while it was three years in the high-altitude population (Murgul) for both sexes. The maximum longevity was seven years in the high-elevation site while it was six years in the low-elevation site. As reported for many lizards, we found a significant positive relationship between age and body size within each sex of Artvin lizard at both altitudes. High- and low-altitude populations did not differ in age structure, survival rates, adult life expectancy and body size. Rather than the effect of altitude, which is hard to compare without replication of other low and high altitude populations, the fact that these two populations have similar growth rates and the similarity of local conditions (food availability and predator density) may indicate similarity between the two regions.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 7112 | 1530 | 47 |
Full Text Views | 27 | 2 | 0 |
PDF Views & Downloads | 26 | 6 | 0 |