Domestic geese can reduce the amount of food intake when brooding. Because of the reduction in food intake, the total number of microorganisms in the gut is also reduced. Will this affect the goose’s thinking and make the goose stop brooding and eat food? We hypothesize that gut microbiota affects the brain through a brain–gut peptide and further regulates the breeding behavior of geese. In this study, we evaluated the microbiome related to the goose and transcription groups of brooding and egg production periods. The changes and differences in gut microbiota and gene expression of female geese in different reproduction periods were analyzed, and the possible interaction between them was explored. The results showed that the relative abundance of Faecalibacterium with a growth-promoting effect in the cecum was higher in the egg production group than in the brooding group. Microbial metabolic pathways with significant differences between the two groups were also enriched in the secondary functional groups with different gut microbiota metabolism. The downregulated genes in the egg production group were mainly related to energy metabolism, such as ATP synthesis-related genes. These results suggest that the brooding group’s gut microbiota can make relevant changes according to the reproduction stage of the goose. Since the amount of food taken in is reduced, it can promote the decomposition of the host’s fat. Simultaneously, insulin is also used to deliver messages to the brain; it is necessary to end the brooding behavior at an appropriate time and for eating to start.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Amato, K.R., Van Belle, S., Di Fiore, A., Estrada, A., Stumpf, R., White, B., Nelson, K.E., Knight, R. & Leigh, S.R. (2017) Patterns in gut microbiota similarity associated with degree of sociality among sex classes of a Neotropical primate. Microb. Ecol., 74, 250-258. DOI:10.1007/s00248-017-0938-6.
Bauer, K.C., Huus, K.E. & Finlay, B.B. (2016) Microbes and the mind: emerging hallmarks of the gut microbiota–brain axis. Cell Microbiol, 18, 632-644. DOI:10.1111/cmi.12585.
Chen, Y.-R., Zhou, L.-Z., Fang, S.-T., Long, H.-Y., Chen, J.-Y. & Zhang, G.-X. (2019) Isolation of Desulfovibrio spp. from human gut microbiota using a next-generation sequencing directed culture method. Lett. Appl. Microbiol., 68, 553-561. DOI:10.1111/lam.13149.
Crusell, M.K.W., Hansen, T.H., Nielsen, T., Allin, K.H., Ruhlemann, M.C., Damm, P., Vestergaard, H., Rørbye, C., Jørgensen, N.R., Christiansen, O.B., Heinsen, F.-A., Franke, A., Hansen, T., Lauenborg, J. & Pedersen, O. (2018) Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome, 6, 89. DOI:10.1186/s40168-018-0472-x.
Ding, J., Dai, R., Yang, L., He, C., Xu, K., Liu, S., Zhao, W., Xiao, L., Luo, L., Zhang, Y. & Meng, H. (2017) Inheritance and establishment of gut microbiota in chickens. Front. Microbiol., 8, 1967. DOI:10.3389/fmicb.2017.01967.
Fijan, S. (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. Int. J. Environ. Res. Public Health, 11, 4745-4767. DOI:10.3390/ijerph110504745.
Ganesan, K., Chung, S.K., Vanamala, J. & Xu, B. (2018) Causal relationship between diet-induced gut microbiota changes and diabetes: a novel strategy to transplant Faecalibacterium prausnitzii in preventing diabetes. Int. J. Mol. Sci., 19, 3720. DOI:10.3390/ijms19123720.
Hou, Q., Kwok, L.-Y., Zheng, Y., Wang, L., Guo, Z., Zhang, J., Huang, W., Wang, Y., Leng, L., Li, H. & Zhang, H. (2016) Differential fecal microbiota are retained in broiler chicken lines divergently selected for fatness traits. Sci. Rep., 6, 37376. DOI:10.1038/srep37376.
Ianiro, G., Tilg, H. & Gasbarrini, A. (2016) Antibiotics as deep modulators of gut microbiota: between good and evil. Gut, 65, 1906-1915. DOI:10.1136/gutjnl-2016-312297.
Katsyuba, E., Mottis, A., Zietak, M., De Franco, F., van der Velpen, V., Gariani, K., Ryu, D., Cialabrini, L., Matilainen, O., Liscio, P., Giacchè, N., Stokar-Regenscheit, N., Legouis, D., de Seigneux, S., Ivanisevic, J., Raffaelli, N., Schoonjans, K., Pellicciari, R. & Auwerx, J. (2018) De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature, 563, 354-359. DOI:10.1038/s41586-018-0645-6.
Kuang, Z., Wang, Y., Li, Y., Ye, C., Ruhn, K.A., Behrendt, C.L., Olson, E.N. & Hooper, L.V. (2019) The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science, 365, 1428-1434. DOI:10.1126/science.aaw3134.
Li, X., Zheng, Z., Pan, J., Jiang, D., Tian, Y. & Huang, Y. (2020) Influences of melatonin and endotoxin lipopolysaccharide on goose productive performance and gut microbiota. Br. Poult. Sci., 61, 217-224. DOI:10.1080/00071668.2019.1687851.
Lian, C.-A., Yan, G.-Y., Huang, J.M., Danchin, A., Wang, Y. & He, L.-S. (2020) Genomic characterization of a novel gut symbiont from the hadal snailfish. Front. Microbiol., 10, 2978. DOI:10.3389/fmicb.2019.02978.
Liu, G., Luo, X., Zhao, X., Zhang, A., Jiang, N., Yang, L., Huang, M., Xu, L., Ding, L., Li, M., Guo, Z., Li, X., Sun, J., Zhou, J., Feng, Y., He, H., Wu, H., Fu, X. & Meng, H. (2018b) Gut microbiota correlates with fiber and apparent nutrients digestion in goose. Poult. Sci., 97, 3899-3909. DOI:10.3382/ps/pey249.
Liu, G.J., Chen, Z.F., Zhao, X.H., Li, M.Y. & Guo, Z.H. (2020) Meta-analysis: supplementary artificial light and goose reproduction. Anim. Reprod. Sci., 214, 106278. DOI:10.1016/j.anireprosci.2020.106278.
Liu, H., Wang, J., Li, L., Han, C., He, H. & Xu, H. (2018a) Transcriptome analysis revealed the possible regulatory pathways initiating female geese broodiness within the hypothalamic-pituitary-gonadal axis. PLoS One, 13, e0191213. DOI:10.1371/journal.pone.0191213.
Liu, Z., de Bruijn, W.J.C., Bruins, M.E. & Vincken, J.-P. (2021) Microbial metabolism of theaflavin-3,3′-digallate and its gut microbiota composition modulatory effects. J. Agric. Food Chem., 69, 232-245. DOI:10.1021/acs.jafc.0c06622.
Lu, X., Zhang, N., Meng, B., Dong, S. & Hu, Y. (2012) Involvement of GPR12 in the regulation of cell proliferation and survival. Mol. Cell. Biochem., 366, 101-110. DOI:10.1007/s11010-012-1287-x.
Maak, S., Jaesert, S., Neumann, K., Yerle, M. & von Lengerken, G. (2001) Rapid communication: chromosomal localization and partial cDNA sequence of the porcine ATP synthase, h+ transporting, mitochondrial F0 complex, subunit e (ATP5I) gene. J. Anim. Sci., 79, 1352-1353.
Meng, H., Zhang, Y., Zhao, L., Zhao, W., He, C., Honaker, C.F., Zhai, Z., Sun, Z. & Siegel, P.B. (2014) Body weight selection affects quantitative genetic correlated responses in gut microbiota. PLoS One, 9, e89862. DOI:10.1371/journal.pone.0089862.
Muller, P.A., Schneeberger, M., Matheis, F., Wang, P., Kerner, Z., Ilanges, A., Pellegrino, K., Del Mármol, J., Castro, T.B.R., Furuichi, M., Perkins, M., Han, W., Rao, A., Pickard, A.J., Cross, J.R., Honda, K., de Araujo, I. & Mucida, D. (2020) Microbiota modulate sympathetic neurons via a gut–brain circuit. Nature, 583, 441-446. DOI:10.1038/s41586-020-2474-7.
Nagano, Y., Itoh,K. & Honda, K. (2012) The induction of Treg cells by gut-indigenous Clostridium. Curr. Opin. Immunol., 24, 392-397. DOI:10.1016/j.coi.2012.05.007.
Ózsvári, B., Sotgia, F. & Lisanti, M.P. (2020) First-in-class candidate therapeutics that target mitochondria and effectively prevent cancer cell metastasis: mitoriboscins and TPP compounds. Aging (Albany NY), 12, 10162-10179. DOI:10.18632/aging.103336.
Parks, D.H., Tyson, G.W., Hugenholtz, P. & Beiko, R.G. (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics, 30, 3123-3124. DOI:10.1093/bioinformatics/btu494.
Patel, B.K.C. & Te’o, V.S.J. (2016) Draft genome sequence of Caloramator mitchellensis, a thermoanaerobe isolated from the waters of the Great Artesian Basin. Genome Announc., 4, e01578-15. DOI:10.1128/genomeA.01578-15.
Pedersen, E. & Brakebusch, C. (2012) Rho GTPase function in development: how in vivo models change our view. Exp. Cell Res., 318, 1779-1787. DOI:10.1016/j.yexcr.2012.05.004.
Ridley, A.J. (2012) Historical overview of Rho GTPases. In: F. Rivero (Ed.) Methods in Molecular Biolology, Vol. 827, pp. 3-12. Springer, New York, NY, USA. DOI:10.1007/978-1-61779-442-1_1.
Royer, L. & Rios, E. (2009) Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle. J. Physiol., 587, 3101-3111. DOI:10.1113/jphysiol.2009.171934.
Salles, B.I.M., Cioffi, D. & Ferreira, S.R.G. (2020) Probiotics supplementation and insulin resistance: a systematic review. Diabetol. Metab. Syndr., 12, 98. DOI:10.1186/s13098-020-00603-6.
Smagin, D.A., Kovalenko, I.L., Galyamina, A.G., Orlov, Y.L., Babenko, V.N. & Kudryavtseva, N.N. (2018) Heterogeneity of brain ribosomal genes expression following positive fighting experience in male mice as revealed by RNA-Seq. Mol. Neurobiol., 55, 390-401. DOI:10.1007/s12035-016-0327-z.
Sonnenburg, E.D., Smits, S.A., Tikhonov, M., Higginbottom, S.K., Wingreen, N.S. & Sonnenburg, J.L. (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529, 212-215. DOI:10.1038/nature16504.
Urbanová, M., Mráz, M., Ďurovcova, V., Trachta, P., Kloučkova, J., Kaválková, P., Haluzíková, D., Lacinová, Z., Hansíková, H., Wenchich, L., Kršek, M. & Haluzík, M. (2017) The effect of very-low-calorie diet on mitochondrial dysfunction in subcutaneous adipose tissue and peripheral monocytes of obese subjects with type 2 diabetes mellitus. Physiol. Res., 66, 811-822. DOI:10.33549/physiolres.933469.
Wang, Y., Huang, J.-M., Wang, S.-L., Gao, Z.-M., Zhang, A.-Q., Danchin, A. & He, L.-S. (2016) Genomic characterization of symbiotic mycoplasmas from the stomach of deep-sea isopod Bathynomus sp. Environ. Microbiol., 18, 2646-2659. DOI:10.1111/1462-2920.13411.
Wang, Y., Wang, H., Wang, B., Zhang, B. & Li, W. (2020b) Effects of manganese and Bacillus subtilis on the reproductive performance, egg quality, antioxidant capacity, and gut microbiota of breeding geese during laying period. Poult. Sci., 99, 6196-6204. DOI:10.1016/j.psj.2020.08.012.
Wang, Z., Fu, H., Zhou, Y., Yan, M., Chen, D., Yang, M., Xiao, S., Chen, C. & Huang, L. (2020a) Identification of the gut microbiota biomarkers associated with heat cycle and failure to enter oestrus in gilts. Microb. Biotechnol., in press. DOI:10.1111/1751-7915.13695.
Yu, J., Lou, Y., He, K., Yang, S., Yu, W., Han, L. & Zhao, A. (2016) Goose broodiness is involved in granulosa cell autophagy and homeostatic imbalance of follicular hormones. Poult. Sci., 95, 1156-1164. DOI:10.3382/ps/pew006.
Yuan, X., Lan, G., Li, L., He, H., Wang, J. & Hu, S. (2020) Differential gene expression profiling of the goose pineal gland. Br. Poult. Sci., 61, 200-208. DOI:10.1080/00071668.2019.1698014.
Zhang, Y., Yao, Y., Wang, M.M., Yang, Y.Z., Gu, T.T., Cao, Z.F., Lu, L., An, C., Wang, J.W., Chen, G.H., Xu, Q. & Zhao, W.M. (2019) Comparisons in geese of the courtship, mating behaviors and fertility of the Carlos and Sichuan breeds and the breed crosses. Anim. Reprod. Sci., 204, 86-94. DOI:10.1016/j.anireprosci.2019.03.008.
Zhao, L., Wang, G., Siegel, P., He, C., Wang, H., Zhao, W., Zhai, Z., Tian, F., Zhao, J., Zhang, H., Sun, Z., Chen, W., Zhang, Y. & Meng, H. (2013) Quantitative genetic background of the host influences gut microbiomes in chickens. Sci Rep, 3, 1163. DOI:10.1038/srep01163.
Zhu, H.X., Hu, M.D., Guo, B.B., Qu, X.L., Lei, M.M., Chen, R., Chen, Z. & Shi, Z.D. (2019) Effect and molecular regulatory mechanism of monochromatic light colors on the egg-laying performance of Yangzhou geese. Anim. Reprod. Sci., 204, 131-139. DOI:10.1016/j.anireprosci.2019.03.015.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 320 | 67 | 20 |
Full Text Views | 17 | 2 | 0 |
PDF Views & Downloads | 35 | 7 | 1 |
Domestic geese can reduce the amount of food intake when brooding. Because of the reduction in food intake, the total number of microorganisms in the gut is also reduced. Will this affect the goose’s thinking and make the goose stop brooding and eat food? We hypothesize that gut microbiota affects the brain through a brain–gut peptide and further regulates the breeding behavior of geese. In this study, we evaluated the microbiome related to the goose and transcription groups of brooding and egg production periods. The changes and differences in gut microbiota and gene expression of female geese in different reproduction periods were analyzed, and the possible interaction between them was explored. The results showed that the relative abundance of Faecalibacterium with a growth-promoting effect in the cecum was higher in the egg production group than in the brooding group. Microbial metabolic pathways with significant differences between the two groups were also enriched in the secondary functional groups with different gut microbiota metabolism. The downregulated genes in the egg production group were mainly related to energy metabolism, such as ATP synthesis-related genes. These results suggest that the brooding group’s gut microbiota can make relevant changes according to the reproduction stage of the goose. Since the amount of food taken in is reduced, it can promote the decomposition of the host’s fat. Simultaneously, insulin is also used to deliver messages to the brain; it is necessary to end the brooding behavior at an appropriate time and for eating to start.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 320 | 67 | 20 |
Full Text Views | 17 | 2 | 0 |
PDF Views & Downloads | 35 | 7 | 1 |