While knowledge on birds’ breeding ecology is essential for understanding avian adaptation and managing conservation, it is poorly studied for many species, even for some common species. The knowledge of the natural history of the red-billed blue magpie (Urocissa erythrorhyncha), a species widely distributed in China and Southeast Asia, is sketchy. Here we present detailed data of nest site selection and the breeding ecology of red-billed blue magpie in central China, and of the effects of nest predation and brood parasitism on reproductive strategies. Most nests were built on Phyllostachys sulphurea and Quercus acutissima. Breeding season ranged from March to August. The first egg was laid between early April and late July. The incubation period lasted 15 days and the nestling period, 18 days. Average clutch size was 4.6 eggs, and brood size at fledging was 3.3 young. Overall, 43.8% of nesting attempts successfully produced at least one fledged young. Nest predation and brood parasitism were the two main reasons for fledging failure, which mainly occurred after April. Correspondingly, U. erythrorhyncha showed a tendency to build nests higher up and have a smaller clutch size in late stages of the breeding season. This study provides the first reliable and comprehensive information on the reproductive parameters of U. erythrorhyncha, which will lay a foundation for further understanding this species’ biology and opens up an avenue for large-scale comparative studies of the Urocissa genus or higher-level taxa.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Beermann, I., Thomas, A., Anisimov, Y., Bastardot, M., Batbayar, N., Davaasuren, B., Gerasimov, Y., Hasebe, M., Nakul, G., Nergui, J., Ktitorov, P., Kulikova, O. & Heim, W. (2021) Range-wide breeding habitat use of the critically endangered yellow-breasted bunting Emberiza aureola after population collapse. Ecol. Evol., 11, 8410-8419. DOI:10.1002/ece3.7668.
Bregnard, C., Rais, O. & Voordouw, M.J. (2020) Climate and tree seed production predict the abundance of the European Lyme disease vector over a 15-year period. Parasit Vectors, 13, 408. DOI:10.1186/s13071-020-04291-z.
Bressler, S.A., Diamant, E.S., Tingley, M.W. & Yeh, P.J. (2020) Nests in the cities: adaptive and non-adaptive phenotypic plasticity and convergence in an urban bird. Proc. R. Soc. B. Biol. Sci., 287, 20202122. DOI:10.1098/rspb.2020.2122.
Bu, H., Shen, X. & Li, S. (2019) Predation patterns on artificial nests of ground nesting pheasants in the montane forest, Southwest China. Acta Ornithol., 54, 35-43. DOI:10.3161/00016454AO2019.54.1.003.
Colombelli-Négrel, D. & Kleindorfer, S. (2009) Nest height, nest concealment, and predator type predict nest predation in superb fairy-wrens (Malurus cyaneus). Ecol. Res., 24, 921-928. DOI:10.1007/s11284-008-0569-y.
DeGregorio, B.A., Weatherhead, P.J. & Sperry, J.H. (2014) Power lines, roads, and avian nest survival: effects on predator identity and predation intensity. Ecol. Evol., 4, 1589-1600. DOI:10.1002/ece3.1049.
del Hoyo, J., Elliott, A. & Sargatal, J. (1992-2011) Handbook of the Birds of the World. Vol. 12. Picathartes to Tits and Chickadees. Lynx Edicions. Barcelona.
Emer, C., Galetti, M., Pizo, M.A., Jordano, P. & Verdú, M. (2019) Defaunation precipitates the extinction of evolutionarily distinct interactions in the Anthropocene. Sci. Adv., 5, eaav6699. DOI:10.1126/sciadv.aav6699.
Fu, Y., Chen, B., Dowell, S.D. & Zhang, Z. (2016) Nest predators, nest-site selection and nest success of the Emei Shan Liocichla (Liocichla omeiensis), a vulnerable babbler endemic to southwestern China. Avian Res., 7, 18. DOI:10.1186/s40657-016-0054-1.
Guan, H., Wen, Y., Wang, P., Lv, L., Xu, J. & Li, J. (2018) Seasonal increase of nest height of the silver-throated tit (Aegithalos glaucogularis): can it reduce predation risk? Avian Res., 9, 42. DOI:10.1186/s40657-018-0135-4.
Guilherme, J.L., Burnside, R.J., Collar, N.J. & Dolman, P.M. (2018) Consistent nest-site selection across habitats increases fitness in Asian houbara. Auk, 135, 192-205. DOI:10.1642/AUK-17-156.1.
Hoyt, D.F. (1979) Practical methods of estimating volume and fresh weight of bird eggs. Auk, 96, 73-77. DOI:10.1093/auk/96.1.73.
Huang, K., Wan, Y., Li, J., Zhu, Y., Sun, Z., Xia, W., Li, D. & Ren, B. (2021) Camera-trapping survey on mammals and birds in Baihe National Nature Reserve, Sichuan Province. Biodiv. Sci., 29, 554-559. DOI:10.17520/biods.2020270.
Jetz, W., Sekercioglu, C.H. & Böhning-Gaese, K. (2008) The worldwide variation in avian clutch size across species and space. PLoS Biol., 6, e303. DOI:10.1371/journal.pbio.0060303.
Jiang, W.L., Zhang, H., Li, Y.Y. & Ma, C.F. (2013) Observation on the breeding habit and diet of the red-billed blue magpie. Jilin Agric., 10, 86-87.
Li, B.H. (1984) The breeding habits of Cissa erythrorhyncha. Wild Anim., 1, 18-20.
Li, X.H., Dong, Y.X., Xu, S.Q. & Huang, B. (2009) Roles of birds in seed dispersal of Phoebe hunanensis in Spirit Valley forest of Nanjing. Chin. J. Ecol., 28, 32-37.
Li, J., Lv, L., Wang, Y., Xi, B. & Zhang, Z. (2012) Breeding biology of two sympatric Aegithalos tits with helpers at the nest. J. Ornithol., 153, 273-283. DOI:10.1007/s10336-011-0740-z.
Li, N., Yang, W., Fang, S., Li, X., Liu, Z., Leng, X. & An, S. (2017) Dispersal of invasive Phytolacca americana seeds by birds in an urban garden in China. Integr. Zool., 12, 26-31. DOI:10.1111/1749-4877.12214.
Li, N., Wang, Z., Li, X.-H., Yi, X.-F., Yan, C., Lu, C.-H. & Chen, S.-C. (2019) Effects of bird traits on seed dispersal of endangered Taxus chinensis (Pilger) Rehd. with ex-situ and in-situ conservation. Forests, 10, 790. DOI:10.3390/f10090790.
Lima, S.L. (2009) Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation. Biol. Rev., 84, 485-513. DOI:10.1111/j.1469-185X.2009.00085.x.
Lindenmayer, D.B., Pope, M.L. & Cunningham, R.B. (1999) Roads and nest predation: an experimental study in a modified forest system. Emu, 99, 148-152. DOI:10.1071/MU99017C.
Lindgren, E., Tälleklint, L. & Polfeldt, T. (2000) Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ. Health Perspect., 108, 119-123. DOI:10.1289/ehp.00108119.
Liu, Y., Zhang, Z.-W., Li, J.-Q., Zhang, Y., Lu, S. & Ruan, X.-F. (2008) A survey of the birds of the Dabie Shan range, central China. Forktail, 24, 80-91.
Lu, X. (2015) Hot genome leaves natural histories cold. Science, 349, 1064. DOI:10.1126/science.349.6252.1064-a.
Ma, Y., Ma, Q., He, N., Zhu, D., Zhao, K., Liu, H., Li, S., Sun, L. & Tang, L. (2020) Camera-trapping survey of mammals and birds in the Foping National Nature Reserve, China. Biodiv. Sci., 28, 226-230. DOI:10.17520/biods.2019240.
Mainwaring, M.C., Reynolds, S.J. & Weidinger, K. (2015) The influence of predation on the location and design of nests. In: D.C. Deeming & S.J. Reynolds (Eds) Nests, Eggs and Incubation, pp. 50-64. Oxford University Press, Oxford, UK.
Martin, T.E. (1993) Nest predation and nest sites. BioScience, 43, 523-532. DOI:10.1086/285582.
Mayr, E., Greenway, J.C. & Peters, J.L. (1964) Check-List of Birds of the World, vol. 10. Harvard University Press, Cambridge, MA, USA.
Mohamadian, F., Shafaeipour, A. & Fathinia, B. (2019) Comparison of nest holes between Syrian woodpecker (Dendrocopos syriacus) and middle spotted woodpecker (Dendrocoptes medius) around Yasouj city in Southwestern Iran. Iranian J. Anim. Biosyst., 15, 99-105. DOI:10.22067/ijab.v15i1.81230.
Møller, A.P. & Díaz, M. (2018) Avian preference for close proximity to human habitation and its ecological consequences. Curr. Zool., 64, 623-630. DOI:10.1093/cz/zox073.
Newmark, W.D. & Stanley, T.R. (2011) Habitat fragmentation reduces nest survival in an Afrotropical bird community in a biodiversity hotspot. Proc. Natl Acad. Sci. U.S.A., 108, 11488-11493. DOI:10.1073/pnas.1104955108.
Okahisa, Y., Morimoto, G. & Takagi, K. (2012) The nest sites and nest characteristics of Narcissus Flycatcher Ficedula narcissina. Ornithol. Sci., 11, 87-94. DOI:10.2326/osj.11.87.
Patten, M.A., Reinking, D.L. & Wolfe, D.H. (2011) Hierarchical cues in brood parasite nest selection. J. Ornithol., 152, 521-532. DOI:10.1007/s10336-010-0608-7.
Pienaar, J., Ilany, A., Geffen, E. & Yom-Tov, Y. (2013) Macroevolution of life-history traits in passerine birds:adaptation and phylogenetic inertia. Ecol. Lett., 16, 571-576. DOI:10.1111/ele.12077.
R Core Team (2021) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Shafaeipour, A., Fathinia, B. & Michalczuk, J. (2020) Nest characteristics of the Eastern Rock Nuthatch (Sitta tephronota) in southwestern Iran. Acta Zool. Acad. Sci. Hung., 66, 85-98. DOI:10.17109/AZH.66.1.85.2020.
Srivastava, D.S., Cadotte, M.W., MacDonald, A.A.M., Marushia, R.G. & Mirotchnick, N. (2012) Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett., 15, 637-648. DOI:10.1111/j.1461-0248.2012.01795.x.
Titcomb, G., Allan, B.F., Ainsworth, T., Henson, L., Hedlund, T., Pringle, R.M., Palmer, T.M., Njoroge, L., Campana, M.G., Fleischer, R.C., Mantas, J.N. & Young, H.S. (2017) Interacting effects of wildlife loss and climate on ticks and tick-borne disease. Proc. R. Soc. B. Biol. Sci., 284, 20170475. DOI:10.1098/rspb.2017.0475.
Travers, M., Clinchy, M., Zanette, L., Boonstra, R. & Williams, T.D. (2010) Indirect predator effects on clutch size and the cost of egg production. Ecol. Lett., 13, 980-988. DOI:10.1111/j.1461-0248.2010.01488.x.
Webb, T.J. & Freckleton, R.P. (2007) Only half right: species with female-biased sexual size dimorphism consistently break Rensch’s rule. PLoS ONE, 2, e897. DOI:10.1371/journal.pone.0000897.
Xiao, H., Hu, Y., Lang, Z., Fang, B., Guo, W., Zhang, Q., Pan, X. & Lu, X. (2017) How much do we know about the breeding biology of bird species in the world? J. Avian Biol., 48, 513-518. DOI:10.1111/jav.00934.
Yu, X.W., Wang, F.Y., Jiang, Z., Huang, S.F. & Hu, X.B. (2014) Nest site selection of red-billed blue magpie (Urocissa erythrorhyncha). Chin. J. Wildl., 35, 440-444.
Zheng, G.M. (2011) A Checklist on the Classification and Distribution of the Birds in China. 2nd Edition. Science Press, Beijing.
Zhou, L., Wan, Y., Hong, X., Zhang, H., Qian, L., Wang, C., Kong, Z., Zhao, K., Li, J. & Zhang, B. (2018) Camera-trapping surveys of the large and medium-sized mammal and understory bird diversity in Yaoluoping National Nature Reserve, Anhui Province. Biodiv. Sci., 26, 1338-1342. DOI:10.17520/biods.2018166.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 717 | 357 | 17 |
Full Text Views | 28 | 17 | 0 |
PDF Views & Downloads | 46 | 27 | 0 |
While knowledge on birds’ breeding ecology is essential for understanding avian adaptation and managing conservation, it is poorly studied for many species, even for some common species. The knowledge of the natural history of the red-billed blue magpie (Urocissa erythrorhyncha), a species widely distributed in China and Southeast Asia, is sketchy. Here we present detailed data of nest site selection and the breeding ecology of red-billed blue magpie in central China, and of the effects of nest predation and brood parasitism on reproductive strategies. Most nests were built on Phyllostachys sulphurea and Quercus acutissima. Breeding season ranged from March to August. The first egg was laid between early April and late July. The incubation period lasted 15 days and the nestling period, 18 days. Average clutch size was 4.6 eggs, and brood size at fledging was 3.3 young. Overall, 43.8% of nesting attempts successfully produced at least one fledged young. Nest predation and brood parasitism were the two main reasons for fledging failure, which mainly occurred after April. Correspondingly, U. erythrorhyncha showed a tendency to build nests higher up and have a smaller clutch size in late stages of the breeding season. This study provides the first reliable and comprehensive information on the reproductive parameters of U. erythrorhyncha, which will lay a foundation for further understanding this species’ biology and opens up an avenue for large-scale comparative studies of the Urocissa genus or higher-level taxa.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 717 | 357 | 17 |
Full Text Views | 28 | 17 | 0 |
PDF Views & Downloads | 46 | 27 | 0 |