Knowledge of diets is important for understanding species ecology and the mechanism of coexistence of multiple closely related species. Two rhinolophid bats, the greater Japanese horseshoe bat (Rhinolophus nippon) and the little Japanese horseshoe bat (Rhinolophus cornutus), occur in Japan, but little is known about their diets and interspecific interactions regarding food resources. In this study, we examined the fecal contents of these two species in the Southern Japanese Alps by microscopic analysis over multiple seasons. R. cornutus, which have more skillful flight, consumed nonvolant insects (caterpillars and spiders), whereas R. nippon did not; this indicates that R. cornutus can glean prey better than R. nippon. The larger-bodied R. nippon more frequently consumed hard-bodied beetles, whereas the smaller-bodied R. cornutus more frequently consumed soft-bodied dipterans and neuropterans. Body size differences influenced flight ability and bite force, which resulted in food resource partitioning and enabled multispecies coexistence of these closely related bats. A R. nippon nursery colony consumed a wider variety of insects, such as beetles, moths, and dipterans, during the pregnancy and lactation periods; however, after lactation, they showed a beetle-dependent diet, and before hibernation they again consumed various food resources. A R. cornutus non-nursery colony frequently consumed dipterans and moths in spring; dipterans, moths, and neuropterans in autumn; and moths and neuropterans in winter. These seasonal changes in diet seemed to be related to food supply or reproductive status.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Agosta, S.J., Morton, D. & Kuhn, K.M. (2003) Feeding ecology of the bat Eptesicus fuscus: ‘preferred’ prey abundance as one factor influencing prey selection and diet breadth. J. Zool., 260, 169-177. https://doi.org/10.1017/S0952836903003601.
Aguirre, L.F., Herrel, A., Van Damme, R. & Matthysen, E. (2002) Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community. Proc. R. Soc. B Biol. Sci., 269, 1271-1278. https://doi.org/10.1098/rspb.2002.2011.
Aguirre, L.F., Herrel, A., Van Damme, R. & Matthysen, E. (2003) The implications of food hardness for diet in bats. Funct. Ecol., 17, 201-212. https://doi.org/10.1046/j.1365-2435.2003.00721.x.
Ahmim, M. & Moali, A. (2013) The diet of four species of horseshoe bat (Chiroptera: rhinolophidae) in a mountainous region of Algeria: evidence for gleaning. Hystrix, 24, 174-176. https://doi.org/10.4404/hystrix-24.2-8728.
Aldasoro, M., Garin, I., Vallejo, N., Baroja, U., Arrizabalaga-Escudero, A., Goiti, U. & Aihartza, J. (2019) Gaining ecological insight on dietary allocation among horseshoe bats through molecular primer combination. PloS ONE, 14, e0220081. https://doi.org/10.1371/journal.pone.0220081.
Andreas, M., Reiter, A., Cepáková, E. & Uhrin, M. (2013) Body size as an important factor determining trophic niche partitioning in three syntopic rhinolophid bat species. Biologia, 68, 170-175. https://doi.org/10.2478/s11756-012-0139-1.
Andriollo, T., Gillet, F., Michaux, J.R. & Ruedi, M. (2019) The menu varies with metabarcoding practices: a case study with the bat Plecotus auritus. PloS ONE, 14, e0219135. https://doi.org/10.1371/journal.pone.0219135.
Anthony, E.L.P. & Kunz, T.H. (1977) Feeding strategies of the little brown bat, Myotis lucifugus, in southern New Hampshire. Ecology, 58, 775-786. https://doi.org/10.2307/1936213.
Arita, H.T. & Fenton, M.B. (1997) Flight and echlocation in the ecology and evolution of bats. Trends Ecol. Evol., 12, 53-58. https://doi.org/10.1016/S0169-5347(96)10058-6.
Barataud, M. (2015) Acoustic Ecology of European Bats: Species Identification, Study of Their Habitats and Foraging Behaviour. Biotope, Mèze/Muséum National d’Histoire Naturelle, Paris, France.
Bat Study and Conservation Group of Japan (2011) A Field Guide to the Bats of Japan. Revised edition. Bun-ich Co., Ltd., Tokyo, Japan.
Begon, M., Townsend, C.R. & Harper, J.L. (2005) Ecology: from Individuals to Ecosystems. Wiley-Blackwell, Hoboken, NJ, USA.
Clare, E.L., Barber, B.R., Sweeney, B.W., Hebert, P.D.N. & Fenton, M.B. (2011) Eating local: influences of habitat on the diet of little brown bats (Myotis lucifugus). Mol. Ecol., 20, 1772-1780. https://doi.org/10.1111/j.1365-294X.2011.05040.x.
Clare, E.L., Symondson, W.O.C. & Fenton, M.B. (2014) An inordinate fondness for beetles? Variation in seasonal dietary preferences of night-roosting big brown bats (Eptesicus fuscus). Mol. Ecol., 23, 3633-3647. https://doi.org/10.1111/mec.12519.
Csorba, G., Ujhelyi, P. & Thomas, N. (2003) Horseshoe Bats of the World (Chiroptera: Rhinolophidae). Alana Books, Bishop’s Castle, United Kingdom.
Dietz, M. & Kalko, E.K.V. (2007) Reproduction affects flight activity in female and male Daubenton’s bats, Myotis daubentoni. Can. J. Zool., 85, 653-664. https://doi.org/10.1139/Z07-045.
Feldhamer, G.A., Carter, T.C. & Whitaker, J.O. (2009) Prey consumed by eight species of insectivorous bats from southern Illinois. Am. Midl. Nat., 162, 43-51. https://doi.org/10.1674/0003-0031-162.1.43.
Fenton, M.B. & Bogdanowicz, W. (2002) Relationships between external morphology and foraging behaviour: bats in the genus Myotis. Can. J. Zool., 80, 1004-1013. https://doi.org/10.1139/z02-083.
Flanders, J. & Jones, G. (2009) Roost use, ranging behavior, and diet of greater horseshoe bats (Rhinolophus ferrumequinum) using a transitional roost. J. Mammal., 90, 888-896. https://doi.org/10.1644/08-MAMM-A-352.1.
Freeman, P.W. (1979) Specialized insectivory: beetle-eating and moth-eating molossid bats. J. Mammal., 60, 467-479. https://doi.org/10.2307/1380088.
Freeman, P.W. (1981) Correspondence of food habits and morphology in insectivorous bats. J. Mammal., 62, 166-173. https://doi.org/10.2307/1380489.
Fukui, D. & Agetsuma, N. (2010) Seasonal change in the diet composition of the Asian parti-coloured bat Vespertilio sinensis. Mamm. Stud., 35, 227-233. https://doi.org/10.3106/041.035.0402.
Fukui, D., Hirao, T., Murakami, M. & Hirakawa, H. (2011) Effects of treefall gaps created by windthrow on bat assemblages in a temperate forest. For. Ecol. Manage., 261, 1546-1552. https://doi.org/10.1016/j.foreco.2011.02.001.
Funakoshi, K. & Maeda, F. (1980) Foraging activity and night-roost usage in the Japanese greater horseshoe bat, Rhinolophus ferrumequinum nippon. Mamm. Stud., 28, 1-10. https://doi.org/10.3106/mammalstudy.28.1.
Funakoshi, K. & Takeda, Y. (1998) Food habits of sympatric insectivorous bats in southern Kyushu, Japan. Mamm. Stud., 23, 49-62. https://doi.org/10.3106/mammalstudy.23.49.
Funakoshi, K. & Uchida, T. (1978) Studies on the physiological and ecological adaptation of temperate insectivorous bats: II. Hibernation and winter activity in some cave-dwelling bats. Jpn J. Ecol., 28, 237-261. https://doi.org/10.18960/seitai.28.3_237.
Funakoshi, K. & Uchida, T.A. (1980) Feeding activity of the Japanese lesser horseshoe bat, Rhinolophus cornutus cornutus, during the hibernation period. J. Mammal., 61, 119-121. https://doi.org/10.2307/1379965.
Gong, L., Gu, H., Chang, Y., Wang, Z., Shi, B., Lin, A., Wu, H., Feng, J. & Jiang, T. (2023) Seasonal variation of population and individual dietary niche in the avivorous bat, Ia io. Oecologia, 201, 733-747. https://doi.org/10.1007/s00442-023-05346-5.
Hartig, F. (2020) DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. Retrieved from: https://CRAN.R-project.org/package=DHARMa (accessed 22 January 2023).
Henry, M., Thomas, D.W., Vaudry, R. & Carrier, M. (2002) Foraging distances and home range of pregnant and lactating little brown bats (Myotis Lucifugus). J. Mammal., 83, 767-774. https://doi.org/10.1644/1545-1542(2002)083<0767:FDAHRO>2.0.CO;2.
Jiang, T., Feng, J., Sun, K. & Wang, J. (2008) Coexistence of two sympatric and morphologically similar bat species Rhinolophus affinis and Rhinolophus pearsoni. Prog. Nat. Sci., 18, 523-532. https://doi.org/10.1016/j.pnsc.2007.12.005.
Jones, G. (1990) Prey selection by the greater horseshoe bat (Rhinolophus ferrumequinum): optimal foraging by echolocation? J. Anim. Ecol., 59, 587-602. https://doi.org/10.2307/4882.
Jones, G. & Rayner, J.M.V. (1989) Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae). Behav. Ecol. Sociobiol., 25, 183-191. https://doi.org/10.1007/BF00302917.
Koselj, K., Schnitzler, H.-U. & Siemers, B.M. (2011) Horseshoe bats make adaptive prey-selection decisions, informed by echo cues. Proc. R. Soc. B Biiol. Sci., 278, 3034-3041. https://doi.org/10.1098/rspb.2010.2793.
Kuramoto, T. (1972) Studies on bats at the Akiyoshi-Dai Plateau, with special reference to the ecological and phylogenic aspect. Bull. Akiyoshi-dai Sci. Mus., 8, 7-199.
Kuramoto, T. (1977) Mammals of Japan (15): order Chiroptera, genus Rhinolophus. Mamm. Sci., 17, 31-57. https://doi.org/10.11238/mammalianscience.17.2_31.
Longru, J., Feng, J., Sun, K., Liu, Y., Wu, L., Li, Z. & Zhang, X. (2005) Foraging strategies in the greater horseshoe bat (Rhinolophus ferrumequinum) on Lepidoptera in summer. Chin. Sci. Bull., 50, 1477-1482. https://doi.org/10.1360/982004-831.
Ma, J., Liang, B., Zhang, S. & Metzner, W. (2008) Dietary composition and echolocation call design of three sympatric insectivorous bat species from China. Ecol. Res., 23, 113-119. https://doi.org/10.1007/s11284-007-0344-5.
McAney, C.M. & Fairley, J.S. (1989) Analysis of the diet of the lesser horseshoe bat Rhinolophus hipposideros in the west of Ireland. J. Zool., 217, 491-498. https://doi.org/10.1111/j.1469-7998.1989.tb02504.x.
Neuweiler, G. (2000) The Biology of Bats. Oxford University Press, New York, NY, USA.
Norberg, U.M. & Rayner, J.M. (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Phil. Trans. R. Soc. B Biol. Sci., 316, 335-427. https://doi.org/10.1098/rstb.1987.0030.
Nowak, R.M. (1994) Walker’s Bats of the World. Johns Hopkins University Press, Baltimore, MD, USA.
Ohdachi, S., Ishibashi, Y., Iwasa, M.A., Fukui, D. & Saitoh, T. (2015) The Wild Mammals of Japan. 2nd Edition. Shoukadoh Book Sellers, Kyoto, Japan.
R Core Team (2020) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austroa. Retrieved from: https://www.R-project.org/ (accessed 22 January 2023).
Salsamendi, E., Garin, I., Arostegui, I., Goiti, U. & Aihartza, J. (2012) What mechanism of niche segregation allows the coexistence of sympatric sibling rhinolophid bats? Front. Zool., 9, 30. https://doi.org/10.1186/1742-9994-9-30.
Sano, A. (2006) Impact of predation by a cave-dwelling bat, Rhinolophus ferrumequinum, on the diapausing population of a troglophilic moth, Goniocraspidum preyeri. Ecol. Res., 21, 321-324. https://doi.org/10.1007/s11284-005-0122-1.
Takada, H., Sato, A. & Katsuta, S. (2021) Food habits of two species of tube-nosed bats, Murina hilgendorfi and Murina ussuriensis, in Hayakawa, central Japan. Anim. Biol., 72, 1-13. https://doi.org/10.1163/15707563-bja10063.
Tournayre, O., Leuchtmann, M., Filippi-Codaccioni, O., Trillat, M., Piry, S., Pontier, D., Charbonnel, N. & Galan, M. (2020) In silico and empirical evaluation of twelve metabarcoding primer sets for insectivorous diet analyses. Ecol. Evol., 10, 6310-6332. https://doi.org/10.1002/ece3.6362.
Tournayre, O., Leuchtmann, M., Galan, M., Trillat, M., Piry, S., Pinaud, D., Filippi-Codaccioni, O., Pontier, D. & Charbonnel, N. (2021) eDNA metabarcoding reveals a core and secondary diets of the greater horseshoe bat with strong spatio-temporal plasticity. Environ. DNA, 3, 277-296. https://doi.org/10.1002/edn3.167.
Vaughan, N. (1997) The diets of British bats (Chiroptera). Mamm. Rev., 27, 77-94. https://doi.org/10.1111/j.1365-2907.1997.tb00373.x.
Whitaker, J.O. Jr (1988) Food habits analysis of insectivorous bats. In: T.H. Kunz (Ed.) Ecological and Behavioral Methods for the Study of Bats, pp. 171-189. Smithsonian Institution Press, Washington, DC, USA.
Whitaker, J.O. Jr (1995) Food of the big brown bat Eptesicus fuscus from maternity colonies in Indiana and Illinois. Am. Midl. Nat., 346-360. https://doi.org/10.2307/2426304.
Whitaker, J.O. Jr, Issac, S.S., Marimuthu, G. & Kunz, T.H. (1999) Seasonal variation in the diet of the Indian pygmy bat, Pipistrellus mimus, in southern India. J. Mammal., 80, 60-70. https://doi.org/10.2307/1383208.
Williams, C., Salter, L. & Jones, G. (2011) The winter diet of the lesser horseshoe bat (Rhinolophus hipposideros) in Britain and Ireland. Hystrix, 22. https://doi.org/10.4404/hystrix-22.1-4498.
Wilson, D.E. & Mittermeier, R.A. (2019) Handbook of the Mammals of the World, Vol. 9, Bats. Lynx Edicions, Barcelona, Spain.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 739 | 355 | 72 |
Full Text Views | 11 | 5 | 3 |
PDF Views & Downloads | 15 | 4 | 1 |
Knowledge of diets is important for understanding species ecology and the mechanism of coexistence of multiple closely related species. Two rhinolophid bats, the greater Japanese horseshoe bat (Rhinolophus nippon) and the little Japanese horseshoe bat (Rhinolophus cornutus), occur in Japan, but little is known about their diets and interspecific interactions regarding food resources. In this study, we examined the fecal contents of these two species in the Southern Japanese Alps by microscopic analysis over multiple seasons. R. cornutus, which have more skillful flight, consumed nonvolant insects (caterpillars and spiders), whereas R. nippon did not; this indicates that R. cornutus can glean prey better than R. nippon. The larger-bodied R. nippon more frequently consumed hard-bodied beetles, whereas the smaller-bodied R. cornutus more frequently consumed soft-bodied dipterans and neuropterans. Body size differences influenced flight ability and bite force, which resulted in food resource partitioning and enabled multispecies coexistence of these closely related bats. A R. nippon nursery colony consumed a wider variety of insects, such as beetles, moths, and dipterans, during the pregnancy and lactation periods; however, after lactation, they showed a beetle-dependent diet, and before hibernation they again consumed various food resources. A R. cornutus non-nursery colony frequently consumed dipterans and moths in spring; dipterans, moths, and neuropterans in autumn; and moths and neuropterans in winter. These seasonal changes in diet seemed to be related to food supply or reproductive status.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 739 | 355 | 72 |
Full Text Views | 11 | 5 | 3 |
PDF Views & Downloads | 15 | 4 | 1 |