Hox gene expression profiles during embryonic development of common sole

in Animal Biology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?



Common sole (Solea solea) aquaculture production is based mostly on wild-caught breeders. Recently, the successful reproduction of first-generation fish that were reared in captivity was accomplished. A consistent good quality and quantity of produced eggs throughout the year, and of next-generation broodstock, is important for reducing the overall cost of production. Hox genes play a pivotal role in normal embryonic development and alterations of their temporal expression level may be important for egg viability. Expression profile analysis of five hox genes (hoxa1a, hoxa2a, hoxa2b, hoxb1a and hoxb1b) involved in early embryonic development and of hoxa13a, which is involved in late stages, was carried out. Results revealed a premature and/or maternal expression of hoxa13a in sole embryos, and the detection of hoxa2a and hoxa2b genes as members of paralog group 2. Principal Component Analysis of hox gene expression in 54 ± 6 hours post fertilization embryos coming from wild-caught broodstock and a first-generation one reared in the hatchery, unveiled that these broodstocks are clearly distinct. In addition, their pairwise comparison revealed significant differences in the expression levels of hoxb1a and hoxb1b genes. Hox gene regulation during embryonic development could give valuable insight into rearing sole broodstocks with different origin in concert, and also into gaining a steady mass production of eggs, either in quality or quantity, all year round.



Ahn, D. & Ho, R.K. (2008) Tri-phasic expression of posterior Hox genes during development of pectoral fins in zebrafish: implications for the evolution of vertebrate paired appendages. Dev. Biol., 322, 220-233.

Amores, A., Suzuki, T., Yan, Y., Pomeroy, J., Singer, A., Amemiya, C. & Postlethwait, J.H. (2004) Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res., 14, 1-10.

Andersen, C.L., Jensen, J.L. & Ørntoft, T.F. (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res., 64, 5245-5250.

Baynes, S.M., Howell, B.R. & Beard, T.W. (1993) A review of egg production by captive sole, Solea solea (L.). Aquac. Res., 24, 171-180.

Bian, C., Hu, Y., Ravi, V., Kuznetsova, I.S., Shen, X., Mu, X., Sun, Y., You, X., Li, J., Li, X., Qiu, Y., Tay, B.H., Thevasagayam, N.M., Komissarov, A.S., Trifonov, V., Kabilov, M., Tupikin, A., Luo, J., Liu, Y., Song, H., Liu, C., Wang, X., Gu, D., Yang, Y., Li, W., Polgar, G., Fan, G., Zeng, P., Zhang, H., Xiong, Z., Tang, Z., Peng, C., Ruan, Z., Yu, H., Chen, J., Fan, M., Huang, Y., Wang, M., Zhao, X., Hu, G., Yang, H., Wang, J., Wang, J., Xu, X., Song, L., Xu, G., Xu, P., Xu, J., O’Brien, S.J., Orbán, L., Venkatesh, B. & Shi, Q. (2016) The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci. Rep., 6, 24501. DOI:10.1038/srep24501.

Bjørndal, T., Guillen, J. & Imsland, A. (2016) The potential of aquaculture sole production in Europe: production costs and markets. Aquac. Econ. Manag., 20, 109-129.

Blonk, R.J.W., Komen, J., Kamstra, A., Crooijmans, R.P.M.A. & van Arendonk, J.A.M. (2009) Levels of inbreeding in group mating captive broodstock populations of common sole, (Solea solea), inferred from parental relatedness and contribution. Aquaculture, 289, 26-31.

Carpenter, E.M. (2002) Hox genes and spinal cord development. Dev. Neurosci., 24, 24-34.

Casaca, A., Santos, A.C. & Mallo, M. (2014) Controlling Hox gene expression and activity to build the vertebrate axial skeleton. Dev. Dyn., 243, 24-36.

Crow, K.D., Amemiya, C.T., Roth, J. & Wagner, G.P. (2009) Hypermutability of HoxA13A and functional divergence from its paralog are associated with the origin of a novel developmental feature in zebrafish and related taxa (Cypriniformes). Evolution, 63, 1574-1592.

Davis, A., Scemama, J.L. & Stellwag, E.J. (2008) Japanese medaka Hox paralog group 2: insights into the evolution of Hox PG2 gene composition and expression in the osteichthyes. J. Exp. Zool. B Mol. Dev. Evol., 310, 623-641.

Davis, A. & Stellwag, E.J. (2010) Spatio-temporal patterns of Hox paralog group 3-6 gene expression during Japanese medaka (Oryzias latipes) embryonic development. Gene Expr. Patterns, 10, 244-250.

Deschamps, J., Akker, E., Forlani, S., De Graaff, W., Oosterveen, T., Roelen, B. & Roelfsema, J. (1999) Initiation, establishment and maintenance of Hox gene expression patterns in the mouse. Int. J. Dev. Biol., 43, 635-650.

Devauchelle, N., Alexandre, J.C., Le Corre, N. & Letty, Y. (1987) Spawning of sole (Solea solea) in capivity. Aquaculture, 66, 125-147.

Estévez, A., Mente, E. & Samaee, S.-M. (2013) Egg protein bound amino acid content and embryo/larva success in common dentex (Dentex dentex), a marine pelagophil teleost. Anim. Biol., 63, 59-75.

Exadactylos, A., Rigby, M.J., Geffen, A.J. & Thorpe, J.P. (2007) Conservation aspects of natural populations and captive-bredstocks of turbot (Scophthalmus maximus) and Dover sole (Solea solea) using estimates of genetic diversity. ICES J. Mar. Sci., 64, 1173-1181.

Gaunt, S.J. (2015) The significance of Hox gene collinearity. Int. J. Dev. Biol., 59, 159-170.

Graham, A., Maden, M. & Krumlauf, R. (1991) The murine Hox-2 genes display dynamic dorsoventral patterns of expression during central nervous system development. Development, 112, 255-264.

Halkos, G.E. & Tsilika, K.D. (2016) Programming correlation criteria with free CAS software. Comput. Econ., 52, 299-311.

Henkel, C.V., Burgerhout, E., de Wijze, D.L., Dirks, R.P., Minegishi, Y., Jansen, H.J., Spaink, H.P., Dufour, S., Weltzien, F.A., Tsukamoto, K. & van den Thillart, G.E.E.J.M. (2012) Primitive duplicate Hox clusters in the European eel’s genome. PLoS One, 7, e32231. DOI:10.1371/journal.pone.0032231.

Hunter, M.P. & Prince, V.E. (2002) Zebrafish Hox paralogue group 2 genes function redundantly as selector genes to pattern the second pharyngeal arch. Dev. Biol., 247, 367-389.

Imsland, A.K., Foss, A., Conceição, L.E.C., Dinis, M.T., Delbare, D., Schram, E., Kamstra, A., Rema, P. & White, P. (2003) A review of the culture potential of Solea solea and S. senegalensis. Rev. Fish Biol. Fish., 13, 379-408.

Jakovlić, I. & Wang, W.M. (2016) Expression of Hox paralog group 13 genes in adult and developing Megalobrama amblycephala. Gene Expr. Patterns, 21, 63-68.

Krumlauf, R. (1994) Hox genes in vertebrate development. Cell, 78, 191-201.

Kubista, M., Andrade, J.M., Bengtsson, M., Forootan, A., Jonák, J., Lind, K., Sindelka, R., Sjöback, R., Sjögreen, B., Strömbom, L., Ståhlberg, A. & Zoric, N. (2006) The real-time polymerase chain reaction. Mol. Aspects Med., 27, 95-125.

Ladam, F. & Sagerström, C.G. (2014) Hox regulation of transcription: more complex(es). Dev. Dyn., 243, 4-15.

Le Pabic, P., Stellwag, E.J., Brothers, S.N. & Scemama, J.-L. (2007) Comparative analysis of Hox paralog group 2 gene expression during Nile tilapia (Oreochromis niloticus) embryonic development. Dev. Genes Evol., 217, 749-758.

Le Pabic, P., Scemama, J.L. & Stellwag, E.J. (2010) Role of Hox PG2 genes in Nile tilapia pharyngeal arch specification: implications for gnathostome pharyngeal arch evolution. Evol. Dev., 12, 45-60.

Lemons, D. & McGinnis, W. (2006) Genomic evolution of Hox gene clusters. Science, 313, 1918-1922.

Lewis, E. (1978) A gene complex controlling segmentation in Drosophila. Nature, 277, 565-570.

Lund, I., Steenfeldt, S.J., Suhr, K.I. & Hansen, B.W. (2008) A comparison of fatty acid composition and quality aspects of eggs and larvae from cultured and wild broodstock of common sole (Solea solea L.). Aquac. Nutr., 14, 544-555.

Maconochie, M., Nonchev, S., Morrison, A. & Krumlauf, R. (1996) Paralogous Hox genes: function and regulation. Annu. Rev. Genet., 30, 529-556.

Mallo, M. & Alonso, C.R. (2013) The regulation of Hox gene expression during animal development. Development, 140, 3951-3963.

Martin, K.J. & Holland, P.W.H. (2014) Enigmatic orthology relationships between Hox clusters of the African butterfly fish and other teleosts following ancient whole-genome duplication. Mol. Biol. Evol., 31, 2592-2611.

Martin, K.J. & Holland, P.W.H. (2017) Diversification of Hox gene clusters in osteoglossomorph fish in comparison to other teleosts and the spotted gar outgroup. J. Exp. Zool. B Mol. Dev. Evol., 328, 638-644.

McClintock, J.M., Carlson, R., Mann, D.M. & Prince, V.E. (2001) Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes. Development, 128, 2471-2484.

McClintock, J.M., Kheirbek, M.A. & Prince, V.E. (2002) Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development, 129, 2339-2354.

Morais, S., Aragão, C., Cabrita, E., Conceição, L.E.C., Constenla, M., Costas, B., Dias, J., Duncan, N., Engrola, S., Estevez, A., Gisbert, E., Mañanós, E., Valente, L.M.P., Yúfera, M. & Dinis, M.T. (2014) New developments and biological insights into the farming of Solea senegalensis reinforcing its aquaculture potential. Rev. Aquac., 8, 227-263.

Mungpakdee, S., Seo, H.-C. & Chourrout, D. (2008) Spatio-temporal expression patterns of anterior Hox genes in Atlantic salmon (Salmo salar). Gene Expr. Patterns, 8, 508-514.

Neijts, R., Simmini, S., Giuliani, F., van Rooijen, C. & Deschamps, J. (2014) Region-specific regulation of posterior axial elongation during vertebrate embryogenesis. Dev. Dyn., 243, 88-98.

Palstra, A.P., Blok, M.C., Kals, J., Blom, E., Tuinhof-Koelma, N., Dirks, R.P., Forlenza, M. & Blonk, R.J.W. (2015) In- and outdoor reproduction of first generation common sole Solea solea under a natural photothermal regime: temporal progression of sexual maturation assessed by monitoring plasma steroids and gonadotropin mRNA expression. Gen. Comp. Endocrinol., 221, 183-192.

Parma, L., Bonaldo, A., Pirini, M., Viroli, C., Parmeggiani, A., Bonvini, E. & Gatta, P.P. (2015) Fatty acid composition of eggs and its relationships to egg and larval viability from domesticated common sole (Solea solea) breeders. Reprod. Domest. Anim., 50, 186-194.

Pfaffl, M.W., Horgan, G.W. & Dempfle, L. (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res., 30, e36.

Prince, V. (2002) The Hox paradox: more complex(es) than imagined. Dev. Biol., 249, 1-15.

Prince, V.E., Moens, C.B., Kimmel, C.B. & Ho, R.K. (1998) Zebrafish hox genes: expression in the hindbrain region of wild-type and mutants of the segmentation gene, valentino. Development, 125, 393-406.

Scemama, J.L., Hunter, M., Mccallum, J., Prince, V. & Stellwag, E. (2002) Evolutionary divergence of vertebrate Hoxb2 expression patterns and transcriptional regulatory loci. J. Exp. Zool., 294, 285-299.

Scemama, J.L., Vernon, J.L. & Stellwag, E.J. (2006) Differential expression of hoxa2a and hoxa2b genes during striped bass embryonic development. Gene Expr. Patterns, 6, 843-848.

Schilling, T.F., Prince, V. & Ingham, P.W. (2001) Plasticity in zebrafish hox expression in the hindbrain and cranial neural crest. Dev. Biol., 231, 201-216.

Schulte, D. & Frank, D. (2014) TALE transcription factors during early development of the vertebrate brain and eye. Dev. Dyn., 243, 99-116.

Soshnikova, N. (2014) Hox genes regulation in vertebrates. Dev. Dyn., 243, 49-58.

Takamatsu, N., Kurosawa, G., Takahashi, M., Inokuma, R., Tanaka, M., Kanamori, A. & Hori, H. (2007) Duplicated Abd-B class genes in medaka hoxAa and hoxAb clusters exhibit differential expression patterns in pectoral fin buds. Dev. Genes Evol., 217, 263-273.

Thummel, R., Li, L., Tanase, C., Sarras, M.P. & Godwin, A.R. (2004) Differences in expression pattern and function between zebrafish hoxc13 orthologs: recruitment of Hoxc13b into an early embryonic role. Dev. Biol., 274, 318-333.

Vallin, L. & Nissling, A. (2000) Maternal effects on egg size and egg buoyancy of Baltic cod, Gadus morhua. Fish. Res., 49, 21-37.


  • P broodstock relative hox gene expression (6 ± 6-102 ± 6 hpf). (A) PG1 (hoxa1a, hoxb1a and hoxb1b). (B) PG2 (hoxa2a and hoxa2b). (C) hoxa13a. Dotted line represents the expression level of hox genes at 54 ± 6 hpf. (a) P<0.05, (b) P<0.01, (c) P<0.005, (d) P<0.001.

    View in gallery
  • Heat map showing cluster analysis of observations (samples given on x-axis) according to similarity in hox gene expression during embryonic development (6 ± 6-102 ± 6 hpf). Autoscaled RT-qPCR expression data were used. Each row represents the expression profile of a single gene across development. Three distinct groups were formed. Similarities in hox gene expression were observed between the sampling times of 6 ± 6 and 12 ± 6 hpf, 30 ± 6 and 102 ± 6 hpf, and 54 ± 6 and 78 ± 6 hpf.

    View in gallery
  • PC analysis of hox gene expression level at 54 ± 6 hpf forming two separate groups (P & G1).

    View in gallery
  • Pairwise comparison of hox gene expression in embryo batches per broodstock (P or G1). Symbols: Expression level 66% higher than the mean value (article image), expression level 33% lower than the mean value (article image) and expression level between 33 and 66% of the mean value (article image). Among the candidate reference genes, rps4 presents the minimum variation in expression.

    View in gallery
  • Differential hox gene expression of P and G1 egg batches at 54 ± 6 hpf. RT-qPCR data (Ct values). Mean ± S.E. (a) P<0.05; (d) P<0.001.

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 31 31 31
Full Text Views 20 20 20
PDF Downloads 1 1 1
EPUB Downloads 1 1 1