The role of the tail in channel passage by the sand skink, Neoseps reynoldsi

in Amphibia-Reptilia
No Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?



Thirteen sand skinks, Neoseps reynoldsi, were observed and videotaped traversing variously spaced plexiglass channels and spacings of pins to investigate locomotory patterns of a slender elongate lizard, with reduced limbs. Five individuals were recorded both before and after tail autotomy. Neoseps moves its limbs in locomotion on a flat surface; the hindlimbs participate in propulsion and their position, relative to their body, reflects the curvature of the trunk. Distance between pins, width of the plexiglass channel, and surface texture influence locomotory patterns. Individuals move more rapidly in wide channels, and movement is most irregular in channels with sandpaper floors. Whether on a plexiglass or a sandpaper floor, individuals travel more rapidly down the 2cm wide channel than the 1 cm channel. Fewer bends in the trunk in the wider channels may allow for more rapid movement. Autotomy of the tail slows movement on a plexiglass or sandpaper floor. The anterior portion of the tail contributes to the establishment of a static friction site that is jerked toward the head during locomotion, advancing the center of gravity in that direction. From the new site the trunk can be straightened by pushing against the friction site. The posterior portion of a tailless individual slides backward as the trunk is straightened, slowing their forward movement. The backward slide may reflect the lower mass and reduced static friction of the partial tail. In channels, Neoseps uses limbed concertina rather than simple concertina to generate a propulsive force. Evolutionarily, it appears that elongation of the tail and trunk did not incorporate the capacity for lateral undulation; as the curves of the trunk and tail seem preprogrammed and do not adjust to local points of contact.

The role of the tail in channel passage by the sand skink, Neoseps reynoldsi

in Amphibia-Reptilia



Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 16 16 0
Full Text Views 36 36 9
PDF Downloads 9 9 0
EPUB Downloads 0 0 0