Variation in body size and age structure among three Turkish populations of the treefrog Hyla arborea

in Amphibia-Reptilia
No Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

To determine how climate factors influence age, body size and sexual size dimorphism (SSD) in the Mediterranean region, we generated data on age and body size of the European Treefrog, Hyla arborea, in three Turkish populations with a latitudinal gradient. We estimated age structure (total n=154), using skeletochronology. Mean body size of both sexes was smaller in a southern population (Antalya) than in northern populations (Çanakkale and Rize) with female-larger SSD in the northern populations. A positive correlation was found between age and body size in each sex of all the populations, save the Antalya females. Since amphibian growth is reduced after maturity but continues towards the asymptotic size, interpopulation size differences may partly be explained by differences in longevity with four years in Antalya and five years in the other two populations. Comparing age and body size in three Turkish populations with those in three different populations (Greece, Switzerland and Germany) from the literature, there was a trend of South-to-North increase in body size with increased latitude and decreased temperature and aridity. The same trend occurred also in age structure (e.g., age at maturity/first reproduction, longevity). These results suggest that a difference in age structure between populations is a main factor for the geographic variation in body size of this species.

Variation in body size and age structure among three Turkish populations of the treefrog Hyla arborea

in Amphibia-Reptilia

Sections

References

AdamsD.C.ChurchJ.O. (2008): Amphibians do not follow Bergmann’s rule. Evolution 62: 413- 420.

BergmannC. (1847): Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Stud. 3: 595- 708.

CaetanoM.H.CastanetJ. (1993): Variability and microevolutionary patterns in Triturus marmoratus from Portugal: age, size, longevity and individual growth. Amphibia-Reptilia 14: 117- 129.

CastanetJ.SmirinaE.M. (1990): Introduction to the skeletochronological method in amphibians and reptiles. Ann. Sci. Nat. Zool. 11: 191- 196.

CvetkovićD.TomasevicN.FicetolaG.F.Crnobrnnja-IsailovicJ.MiaudC. (2009): Bergmann’s rule in amphibians: combining demographic and ecological parameters to explain body size variation among populations in the common toad Bufo bufo. J. Zool. Sys. Evol. Res. 47: 171- 180.

DriscollD.A. (1999): Skeletochronological assessment of age structure and population stability for two threatened frog species. Aust. J. Ecol. 24: 182- 189.

EdenC.J.WhitemanH.H.Duobinis-GrayL.WissingerS.A. (2007): Accuracy assessment of skeletochronology in the Arizona tiger salamander (Ambystoma tigrinum nebulosum). Copeia 2007: 471- 477.

EstebanM.Garcia-ParisM.CastanetJ. (1996): Use of bone histology in estimating the age of frogs (Rana perezi) from a warm temperate climate area. Can. J. Zool. 74: 1914- 1921.

EstebanM.Garcia-ParisM.CastanetJ. (1999): Bone growth and age in Rana saharica, a water frog living in a desert environment. Ann. Zool. Fenn. 36: 53- 62.

FederM.E.BurggrenW.W. (1992): Environmental Physiology of the Amphibians . University of Chicago PressChicago.

FicetolaG.F.ScaliS.DenoëlM.MontinaroG.VukovT.D.ZuffiM.A.L.Padoa-SchioppaE. (2010): Ecogeographical variation of body size in the newt Triturus carnifex: comparing the hypotheses using an information-theoretic approach. Global Ecol. Biogeogr. 19: 485- 495.

FriedlT.W.P.KlumpG.M. (1997): Some aspects of population biology in the European treefrog, Hyla arborea. Herpetologica 53: 321- 330.

Gasc J.P. Cabela A. Crnobrnja-Isailovic J. Dolmen D. Grossenbacher K. Haffner P. Lescure J. Martens H. Martínez Rica J.P. Maurin H. Oliveira M.E. Sofianidou T.S. Veith M. Zuiderwijk A. (Eds) (1997): Atlas of Amphibians and Reptiles in Europe . Collection Patrimoines Naturels 29. Societas Europaea Herpetologica, Muséum National d’Histoire Naturelle & Service du Petrimone NaturelParis496 pp.

GuarinoF.M.ErismisU.C. (2008): Age determination and growth by skeletochronology of Rana holtzi, an endemic frog from Turkey. Ital. J. Zool. 75: 237- 242.

GvozdikV. (2010): Second species of tree frog, Hyla orientalis (formely H. arborea), from Iran confirmed by acoustic data. Herpetol. Notes 3: 41- 44.

GvozdikV.MoravecJ.KlütschC.KotlikP. (2010): Phylogeography of the Middle Eastern tree frogs (Hyla, Hylidae, Amphibia) as inferred from nuclear and mitochondrial DNA variation, with a description of a new species. Mol. Phylogenet. Evol. 55: 1146- 1166.

HasumiM. (2010): Age, body size, and sexual dimorphism in size and shape in Salamandrella keyserlingii (Caudata: Hynobiidae). Evol. Biol. 37: 38- 48.

HutchinsonV.H.DupreR.K. (1992): Thermoregulation. In: Environmental Physiology of the Amphibians p.  206- 249. FederM.E.BurggrenW.W. Eds University of Chicago PressChicago.

JakobC.SeitzA.CrivelliA.J.MiaudC. (2002): Growth cycle of the marbled newt (Triturus marmoratus) in the Mediterranean region assessed by skeletochronology. Amphibia-Reptilia 23: 407- 418.

KayaU.AgasyanA.AvcıA.TuniyevB.IsailovicJ.C.LymberakisP.AndrénC.CogalniceanuD.WilkinsonJ.AnanjevaN.ÜzümN.OrlovN.PodlouckyR.TuniyevS. (2008): Hyla arborea. In: IUCN 2011. IUCN Red List of Threatened Species. Version 2011.1. <www.iucnredlist.org>. Downloaded on 01 May 2011.

KleinenbergS.E.SmirinaE.M. (1969): On the method of determination of age in amphibians. Zool. Zh. 48: 1090- 1094 (in Russian) .

Kyriakopoulou-SklavounouP.GrumiroI. (2002): Body size and age assessment among breeding populations of the tree frog Hyla arborea in northern Greece. Amphibia-Reptilia 23: 219- 224.

LiaoW.B.LuX. (2010): Age structure and body size of the Chuanxi Tree Frog Hyla annectans chuanxiensis from 2 different elevations in Sichuan (China). Zool. Anz. 248: 255- 263.

LovichJ.E.GibbonsJ.W. (1992): A review of techniques for quantifying sexual size dimorphism. Growth Dev. Aging 56: 269- 281.

LyapkovS.M.CherdantsevV.G.CherdantsevaE.M. (2010): Geographic variation of sexual dimorphism in the moor frog (Rana arvalis) as a result of differences in reproductive strategies. Zh. Obshch. Biol. 71: 337- 358.

MonnetJ.M.CherryM.I. (2002): Sexual size dimorphism in anurans. Proc. R. Soc. Lond. B 269: 2301- 2307.

NevoE. (1973): Adaptive variation in size of cricket frogs. Ecology 54: 1271- 1281.

Olalla-TárragaM.Á.RodríguezM.Á. (2007): Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann’s rule, urodeles its converse. Global Ecol. Biogeogr. 16: 606- 617.

OlgunK.ÜzümN.AvcıA.MiaudC. (2005): Age, size and growth of the southern crested newt Triturus karelinii (Strauch 1870) in a population from Bozdağ (western Turkey). Amphibia-Reptilia 26: 223- 230.

PinderA.W.StoreyK.B.UltschG.R. (1992): Estivation and hibernation. In: Environmental Physiology of the Amphibians p. 250- 274. FederM.E.BurggrenW.W. Eds University of Chicago PressChicago.

Rivas-MartinezS.PenasA.LuengoM.A.Rivas-SáenzS. (2003): Worldwide Bioclimatic Classification System . LiethH. (Ed.) CD-ROM ISBN 90-5782-139-7http://www.ucm.es/info/cif/plot/diagram.htm

RyserJ. (1988): Determination of growth and maturation in the common frog, Rana temporaria, by skeletochronology. J. Zool. Lond. 216: 673- 685.

SecorS. M. (2005): Physiological responses to feeding, fasting and estivation for anurans. J. Exp. Biol. 208: 2595- 2608.

ShineR. (1979): Sexual selection and sexual dimorphism in the Amphibia. Copeia 1979: 297- 306.

SmirinaE.M. (1972): Annual layers in bones of Rana temporaria. Zool. Zh. 51: 1529- 1534.

StöckM.DubeyS.KlütschC.LitvinchukS.N.ScheidtU.PerrinN. (2008): Mitochondrial and nuclear phylogeny of circum-Mediterranean tree frogs from the Hyla arborea group. Mol. Phylogenet. Evol. 49: 1019- 1024.

StoreyJ.M.StoreyK.B. (2002): Life in the slow lane: molecular mechanisms of estivation. Comp. Biochem. Physiol. 133: 733- 754.

TesterU. (1990): Artenschuetzerisch relevante aspecte zur oecologie des laubfroschs (Hyla arborea L.). Dissertation University of Basel Switzerland 291 pp.

YilmazN.KutrupB.ÇobanoğluU.ÖzoranY. (2005): Age determination and some growth parameters of a Rana ridibunda population in Turkey. Acta Zool. Hung. 51: 67- 74.

WellsK.D. (2007): The Ecology & Behavior of Amphibians . University of Chicago PressChicago1148 pp.

WithersP.C. (1993): Metabolic depression during aestivation in the Australian frogs Neobatrachus and Cyclorana. Aust. J. Zool. 41: 467- 473.

Figures

  • View in gallery

    Age-frequency distributions for male and female H. arborea from Antalya, Çanakkale and Rize populations.

  • View in gallery

    A cross-section (18 μm thick) at the diaphysis level of a phalanx of a male H. arborea from the Çanakkale population (m.c. = marrow cavity, r.l. = resorption line, e.b. = endosteal bone). The four LAGs are indicated by black arrows, the double line (white arrow) near the second LAG was not considered for the age estimation.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 28 28 4
Full Text Views 112 112 35
PDF Downloads 9 9 1
EPUB Downloads 0 0 0