Nuclear and mitochondrial markers reveal the existence of several geographically concordant lineages within a Sahelian gecko species, Ptyodactylus ragazzii

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


The genetic diversity within Ptyodactylus ragazzii was analysed for the first time across the Western part of its range. We have used two mitochondrial (12s rRNA and 16s rRNA) and one nuclear (Cmos) marker to compare results directly with other related Ptyodactylus species, P. oudrii and P. hasselquistii. Results show high levels of intraspecific variability, with at least three divergent mtDNA lineages that have different haplotypes for Cmos and that are geographically concordant. P. ragazzii from Mauritania is probably a distinct species and possibly other lineages too, such as those from the Aïr Mountains in Niger, although more nuclear markers are needed to confirm this. All analysed Ptyodactylus species appear to be cryptic species complexes containing multiple deeply divergent forms, highlighting the need for a careful reassessment of the taxonomy of the whole genus.

Nuclear and mitochondrial markers reveal the existence of several geographically concordant lineages within a Sahelian gecko species, Ptyodactylus ragazzii

in Amphibia-Reptilia



AndersonJ. (1898): Zoology of Egypt Vol. 1. Reptilia and Batrachia. QuaritchLondon.

ArnoldE.N. (1986): A key and annotated check-list to the lizards and amphisbaenians of Arabia. Fauna of Saudi Arabia 8: 385-435.

Baha El DinS.M. (1999): On the specific status of Ptyodactylus ragazzii Anderson, 1898 and its occurrence in Egypt. Herpetozoa 12: 39-43.

BandeltH.ForsterP.RohlA. (1999): Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16: 37-48.

BarataM.PereraA.Martínez-FreiríaF.HarrisD.J. (2012): Cryptic diversity within the Moroccan endemic day geckos Quedenfeldtia (Squamata: Gekkonidae): a multidisciplinary approach using genetic, morphological and ecological data. Biol. J. Linnean Soc. 106: 828-850.

BarataM.CarranzaS.HarrisD.J. (2012): Extreme genetic diversity in the lizard Atlantolacerta andreanskyi (Werner, 1929): a montane cryptic species complex. BMC Evol. Biol. 12(1): 167.

BlairC.MéndezF.R.CruzD.E.L.A.NgoA.LindellJ.LathropA.M.Y.MurphyR.W. (2009): Molecular phylogenetics and taxonomy of leaf-toed geckos (Phyllodactylidae: Phyllodactylus) inhabiting the peninsula of Baja California. Zootaxa 2027: 28-42.

BritoJ.C.FahdS.GeniezP.Martínez-FreiríaF.PleguezuelosJ.M.TrapeJ.-F. (2011): Biogeography and conservation of viperids from North-West Africa: an application of ecological niche-based models and GIS. J. Arid Environments 75(11): 1029-1037.

CastigliaR.AnnesiF. (2011): The phylogenetic position of Lygodactylus angularis and the utility of using the 16S rDNA gene for delimiting species in Lygodactylus (Squamata, Gekkonidae). Acta Herpetol. 6: 35-45.

de la RivaI.PadialJ.M. (2008): First record of the genus Ptyodactylus Goldfuss, 1820 (Sauria: Gekkonidae) for Mauritania (West Africa). Salamandra 44(1): 51-53.

DekeyserP.L.VilliersA. (1956): Contribution a l’étude du peuplement de la Mauritanie. Notations ecologiques et biogeographiques sur la faune de l’Adrar. Mémoires de l’Institut Français d’Afrique Noire 44: 220-222.

DrummondA.J.HoS.Y.W.PhillipsM.J.RambautA. (2006): Relaxed phylogenetics and dating with confidence. Plos Biology 4(5): e88.

DrummondA.J.RambautA. (2007): BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.

DrummondA.J.SuchardM.A. (2010): Bayesian random local clocks, or one rate to rule them all. BMC Biology 8: 114. DOI:10.1186/1741-7007-8-114

FroufeE.BritoJ.C.HarrisD.J. (2009): Phylogeography of North African Amietophrynus xeros estimated from mitochondrial DNA sequences. Afric. Zool. 44: 208-215.

GambleT.BauerA.M.GreenbaumE.JackmanT.R. (2008): Out of the blue: a novel, trans-Atlantic clade of geckos (Gekkota, Squamata). J. Zool. Scr. 37(4): 355-366.

GambleT.BauerA.M.ColliG.R.GreenbaumE.JackmanT.R.VittL.J.SimonsA.M. (2011): Coming to America: multiple origins of New World geckos. J. of Evol. Biol. 24: 231-244.

GonçalvesD.V.BritoJ.C.CrochetP.-A.GeniezP.PadialJ.M.HarrisD.J. (2012): Phylogeny of North African Agama lizards (Reptilia: Agamidae) and the role of the Sahara desert in vertebrate speciation. Mol. Phylogenet. Evol. 64: 582-591.

GuindonS.GascuelO. (2003): A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704.

HarrisD.J.ArnoldE.N.ThomasR.H. (1998): Relationships of the lacertid lizards (Reptilia: Lacertidae) estimated from mitochondrial DNA sequences and morphology. Proc. R. Soc. Lond. B Biol. Sci. 265: 1939-1948.

HarrisD.J.BatistaV.CarreteroM.A.FerrandN. (2004): Genetic variation in Tarentola mauritanica (Reptilia, Gekkonidae) across the Strait of Gibraltar derived from mitochondrial and nuclear DNA sequences. Amphibia-Reptilia 25(4): 451-459.

HedgesS.B.BezyR.L.MaxsonL.R. (1991): Phylogenetic relationships and biogeography of xantusiid lizards, inferred from mitochondrial DNA sequences. Mol. Biol. Evol. 8: 767-780.

KatohK.TohH. (2008): Recent developments in the MAFFT multiple sequence alignment program. Briefings in bioinformatics 9: 286-298.

KocherT.D.ThomasW.K.MeyerA.EdwardsS.V.PääboS.VillablancaF.X.WilsonA.C. (1989): Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86: 6196-6200.

Le HouérouH.N. (1997): Climate, flora and fauna changes in the Sahara over the past 500 million years. J. Arid Environments 37: 619-647.

Mason-GamerR.J.KelloggE.A. (1996): Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst. Biol. 45: 524-545.

PadialJ.M.MirallesA.De la RivaI.VencesM. (2010): The integrative future of taxonomy. Front. Zool. 7: 16.

PereraA.HarrisD.J. (2010): Genetic variability within the Oudri’s fan-footed gecko Ptyodactylus oudrii in North Africa assessed using mitochondrial and nuclear DNA sequences. Mol. Phylogenet. Evol. 54: 634-639.

PereraA.SampaioF.CostaS.SalviD.HarrisD.J. (2012): Genetic variability and relationships within the skinks Eumeces algeriensis and Eumeces schneideri using mitochondrial markers. Afr. J. Herpet. 61: 69-80.

PinhoC.HarrisD.J.FerrandN. (2007): Comparing patterns of nuclear and mitochondrial divergence in a cryptic species complex: the case of Iberian and North African wall lizards (Podarcis, Lacertidae). Biol. J. Linn. Soc. 91: 121-133.

PosadaD. (2008): jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25: 1253-1256.

RambautA.DrummondA.J. (2007): Tracer v1.4 Available from

RatoC.BritoJ.C.CarreteroM.A.LarbesS.ShachamB.HarrisD.J. (2007): Phylogeography and genetic diversity within Psammophis schokari (Psammophiinae) in North Africa based on mitochondrial DNA sequences. Afr. Zool. 42: 112-117.

RatoC.HarrisD.J. (2008): Genetic variation within Saurodactylus and its phylogenetic relationships within the Gekkonoidea estimated from mitochondrial and nuclear DNA sequences. Amphibia-Reptilia 29: 25-34.

RatoC.CarranzaS.HarrisD.J. (2012): Evolutionary history of the genus Tarentola (Gekkota: Phyllodactylidae) from the Mediterranean Basin, estimated using multilocus sequence data. BMC Evol. Biol. 12: 12.

RecueroE.IraolaA.RubioX.MachordomA.Garcia-ParísM. (2007): Mitochondrial differentiation and biogeography of Hyla meridionalis (Anura: Hylidae): an unusual phylogeographical pattern. J. Biogeo. 34(7): 1207-1219.

RonquistF. (2003): MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.

SaintK.M.AustinC.C.DonnellanS.C.HutchinsonM.N. (1998): C-mos, a nuclear marker useful for squamate phylogenetic analysis. Mol. Phylogenet. Evol. 10: 259-263.

SambrookJ.FritschE.F.ManiatisT. (1989): Molecular cloning: a laboratory manual. Cold Spring Harbour PressNew York.

SchleichH.H.KästleW.KabischK. (1996): Amphibians and reptiles from North Africa. Koeltz Scientific PublicationsKönigstein, Germany.

SindacoR.JeremčenkoV.K. (2008): The reptiles of the Western Palearctic. 1. Annotated checklist and distributional atlas of the turtles crocodiles amphisbenians and lizards of Eu rope North Africa Middle East and Central Asia. Edizioni BelvedereLatina580 pp.

TamuraK.PetersonD.PetersonN.StecherG.NeiM.KumarS. (2011): MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28(10): 2731-2739.

TrapeS. (2009): Impact of climate change on the relict tropical fish fauna of central Sahara: threat for the survival of Adrar Mountains Fishes, Mauritania. PLoS ONE 4(2): e4400.

TrapeJ.F.TrapeS.ChirioL. (2012): Lézards crocodiles et tortues d’Afrique occidentale et du Sahara. IRD Éditions.

WernerY.L.SivanN. (1993): Systematics and zoogeography of Ptyodactylus (Reptilia: Sauria: Gekkonidae) in the levant: 1, biometry of three species in Israel. Rev. Esp. Herp. 7: 47-64.

WernerY.L.SivanN. (1994): Systematics and Zoogeography of Ptyodactylus (Reptilia: Sauria: Gekkonidae) in the levant: 2, taxonomy, with a review of ecology and zoogeography. Rev. Esp. Herp. 8: 105-122.

ZangariF.CimmarutaR.NascettiG. (2006): Genetic relationships of the western Mediterranean painted frogs based on allozymes and mitochondrial markers: evolutionary and taxonomic inferences (Amphibia, Anura, Discoglossidae). Biol. J. Linnean Soc. 87: 515-536.


  • View in gallery

    Study area and location of newly sequenced samples of P. ragazzii. Sample codes are indicated. Circles, triangles, and squares in the large map represent phylogenetic haplogroups obtained in the tree (fig. 2). Small map represents the distribution of the other species of Ptyodactylus included (modified from Sindaco and Jeremcenko, 2008 to include the recently identified Mauritanian population). White circles: P. oudrii; dark gray circles: P. guttatus; white squares: P. hasselquistii; dark gray squares: P. ragazzii.

  • View in gallery

    Left: Phylogenetic tree obtained by BI and ML analysis of the combined mtDNA fragments (12s and 16s). Support values (%) are given as Bayesian posterior probability/Bootstrap support. Dark circles indicate 100/100 support. Some terminal node values were omitted for clarity. Right: BEAST maximum clade credibility tree for the sampled Ptyodactylus lineages. Divergence times correspond to the mean posterior estimate of their age in million years. The grey bars indicate the height 95% HPD interval. Nodes with a posterior probability < 0.95 do not present a bar.

  • View in gallery

    Haplotype (median joining) network showing the relationships of Ptyodactylus species, highlighted for P. oudrii and P. ragazzii, inferred from 339 bp Cmos nuclear sequences. Circle sizes are proportional to the number of samples sharing the same haplotype. Dashes represent mutated positions. Black circles represent median vectors.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 28 28 7
Full Text Views 29 29 11
PDF Downloads 5 5 2
EPUB Downloads 3 3 0