Population genetics in a fragmented population of the European tree frog (Hyla arborea)

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Habitat degradation and fragmentation are known to be major threats for population persistence in European amphibians. The European tree frog Hyla arborea has suffered from dramatic population declines in the last decades and has therefore been categorised as threatened in many Red Data lists. In the region of Hannover (Germany), the European tree frog has a fragmented distribution. The aim of our study was to infer the genetic consequences of habitat fragmentation in this area by examining genetic variation and population structure. DNA samples from 193 individuals from 11 sampling sites (10 sampling sites located 2 to 32 km apart from each other near Hannover and for comparison one sampling site 140 km northeast) were analysed with eight highly polymorphic microsatellite loci. Bayesian analyses indicated that the tree frog occurrences near Hannover were fragmented into four genetically distinct clusters according to their geographical distribution. Pairwise genetic distances between sampling sites varied between 0 and 0.23 (FST) and 0 and 0.48 (Dest) and indicated high to moderate gene flow within genetic clusters and nearly absent gene flow among genetic clusters. Moreover, we identified a potential source population within the region for an introduced population in the southwest of Hannover. Our data suggest that the genetic structure is influenced in part by isolation by distance and in part by lack of habitat or migration barriers. Habitat fragmentation should by counteracted by targeted conservation measures in areas where gaps in distribution and genetic fragmentation have been revealed.

Population genetics in a fragmented population of the European tree frog (Hyla arborea)

in Amphibia-Reptilia



AndersenL.W.FogK.DamgaardC. (2004): Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proc. R. Soc. Lond. B 271: 1293-1302.

AngeloneS. (2010): Are differences in fitness traits related to genetic clusters? An empirical test on the European tree frog. Biol. Cons. 143: 471-478.

AngeloneS.HoldereggerR. (2009): Population genetics suggests effectiveness of habitat connectivity measures for the European tree frog in Switzerland. J. Appl. Ecol. 46: 879-887.

AngeloneS.KienastF.HoldereggerR. (2011): Where movement happens: scale-dependent landscape effects on genetic differentiation in the European tree frog. Ecography 34: 714-722.

ArensP.WestendeW.V.t.BugterR.SmuldersM.J.M.VosmanB. (2000): Microsatellite markers for the European tree frog Hyla arborea. Mol. Ecol. 9: 1944-1946.

ArensP.BugterR.van’t WestendeW.ZollingerR.StronksJ.VosC.C.SmuldersM.J.M. (2006): Microsatellite variation and population structure of a recovering Tree frog (Hyla arborea L.) metapopulation. Conserv. Genet. 7: 825-835.

ArensP.van der SluisT.van’t WestendeW.P.C.VosmanB.VosC.C.SmuldersM.J.M. (2007): Genetic population differentiation and connectivity among fragmented Moor frog (Rana arvalis) populations in The Netherlands. Landsc. Ecol. 22: 1489-1500.

BakerJ. (1997): Stability for Swedish treefrogs? FrogLog 20: 2-3.

BeebeeT.RoweG. (2001): Application of genetic bottleneck testing to the investigation of amphibian declines: a case study with natterjack toads. Cons. Biol. 15: 266-270.

BeebeeT.J.C. (2005): Conservation genetics of amphibians. Heredity 95: 423-427.

BelkhirK.BorsaP.ChikhiL.RaufasteN.BonhommeF. (1996-2004): GENETIX 4.05 logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome Populations Interactions CNRS UMR 5171 Université de Montpellier II Montpellier (France).

Berset-BrändliL.JaquieryJ.PerrinN. (2007): Recombination is suppressed and variability reduced in a nascent Y chromosome. J. Evol. Biol. 20: 1182-1188.

Berset-BrändliL.JaquieryJ.BroquetT.UlrichY.PerrinN. (2008): Extreme heterochiasmy and nascent sex chromosomes in European tree frogs. Proc. R. Soc. Lond. B 275: 1577-1585.

BronmarkC.EdenhamnP. (1994): Does the presence of fish affect the distribution of tree frogs (Hyla arborea)? Cons. Biol. 8: 841-845.

ClarkR.W.BrownW.S.StechertR.ZamudioK.R. (2010): Roads, interrupted dispersal, and genetic diversity in timber rattlesnakes. Cons. Biol. 24: 1059-1069.

ClausnitzerH.J. (1983): Zum gemeinsamen Vorkommen von Amphibien und Fischen. Salamandra 19: 158-162.

CornuetJ.M.LuikartG. (1996): Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001-2014.

CushmanS.A. (2006): Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Cons. 128: 231-240.

DubeyS.UrsenbacherS.PelletJ.FumagalliL. (2009): Genetic differentiation in two European tree frog (Hyla arborea) metapopulations in contrasted landscapes of western Switzerland. Amphibia-Reptilia 30: 127-133.

EdenhamnP.HoggrenM.CarlsonA. (2000): Genetic diversity and fitness in peripheral and central populations of the European tree frog Hyla arborea. Hereditas 133: 115-122.

EvannoG.RegnautS.GoudetJ. (2005): Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620.

ExcoffierL.SmouseP.E.QuattroJ.M. (1992): Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131: 479-491.

ExcoffierL.LavalG.SchneiderS. (2005): Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. 1: 47-50.

FalushD.StephensM.PritchardJ.K. (2003): Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164: 1567-1587.

FilodaH. (1981): Das Vorkommen von Amphibien in Fischgewässern des östlichen Teils Lüchow-Dannenbergs. Beitr. Naturk. Nieders. 34: 185-189.

FogK. (1993): Migration in the tree frog Hyla arborea. In: Ecology and Conservation of the European Tree Frog; Proceedings of the 1st International Workshop on Hyla arborea 13-14 February 1992 Potsdam Germany p.  55-64. StumpelA.H.P.TesterU. Eds.

FogK. (1995): Amphibian conservation in Denmark. FrogLog 13: 1-2.

FrankhamR.BallouJ.D.BriscoeD.A. (2002): Introduction to Conservation Genetics. Cambridge University PressCambridge.

GascJ.CabelaA.Crnobrnja-IsailovicJ.DolmenD.GrossenbacherK.HaffnerP.LescureJ.MartensH.Martinez RicaJ.P.MaurinH.OliveiraM.E.SofianidouT.S.VeithM.ZuiderwijkA. (1997): Atlas of Amphibians and Reptiles of Europe. Societas Europea Herpetologica, Museum National D’Histoire NaturelleParis.

GerlachG.JueterbockA.KraemerP.DeppermannJ.HarmandP. (2010): Calculations of population differentiation based on G(ST) and D: forget G(ST) but not all of statistics! Mol. Ecol. 19: 3845-3852.

GoudetJ. (1995): FSTAT (Version 1.2): a computer program to calculate F-statistics. J. Hered. 86: 485-486.

GrosseW.-R. (1994): Der Laubfrosch: Hyla arborea. Westarp Wissenschaften Magdeburg.

GuillotG.EstoupA.MortierF.CossonJ.F. (2005a): A spatial statistical model for landscape genetics. Genetics 170: 1261-1280.

GuillotG.MortierF.EstoupA. (2005b): GENELAND: A computer package for landscape genetics. Mol. Ecol. Notes 5: 712-715.

GuoS.W.ThompsonE.A. (1992): Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361-372.

HedrickP.W. (2005): A standardized genetic differentiation measure. Evolution 59: 1633-1638.

HedrickP.W.BrussardP.F.AllendorfF.W.BeardmoreJ.A.OrzackS. (1986): Protein variation, fitness, and captive propagation. Zoo Biol. 5: 91-99.

HitchingsS.P.BeebeeT.J.C. (1997): Genetic substructuring as a result of barriers to gene flow in urban Rana temporaria (common frog) populations: implications for biodiversity conservation. Heredity 79: 117-127.

HorreoJ.L.MartinezJ.L.AyllonF.PolaI.G.MonteolivaJ.A.HelandM.Garcia-VazquezE. (2011): Impact of habitat fragmentation on the genetics of populations in dendritic landscapes. Freshw. Biol. 56: 2567-2579.

JehleR.BurkeT.ArntzenJ.W. (2005): Delineating fine-scale genetic units in amphibians: Probing the primacy of ponds. Conserv. Genet. 6: 227-234.

JensenJ.L.BohonakA.J.KelleyS.T. (2005): Isolation by distance, web service. BMC Genet. 6: 6.

JostL. (2008): G(ST) and its relatives do not measure differentiation. Mol. Ecol. 17: 4015-4026.

KayaU.AgasyanA.AvisiA.TuniyevB.IsailovicJ.C.LymberakisP.AndrénC.CogalniceanuD.WilkinsonJ.AnanjevaN.ÜzümN.OrlovN.PodlouckyR.TuniyevS.KayaU. (2009): Hyla arborea. In: IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2. www.iucnredlist.org. Downloaded on 2 May 2012.

KlugT. (1994): Laubfroschkartierung im Landkreis Hannover p. 157. Im Auftrag des Niedersächsischen Landesamtes für Ökologie Fachbehörde für Naturschutz.

Kraaijeveld-SmitF.J.L.BeebeeT.J.C.GriffithsR.A.MooreR.D.SchleyL. (2005): Low gene flow but high genetic diversity in the threatened Mallorcan midwife toad Alytes muletensis. Mol. Ecol. 14: 3307-3315.

LandguthE.L.CushmanS.A.SchwartzM.K.McKelveyK.S.MurphyM.LuikartG. (2010): Quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 19: 4179-4191.

LesbarrèresD.PrimmerC.R.LodeT.MerilaJ. (2006): The effects of 20 years of highway presence on the genetic structure of Rana dalmatina populations. Ecoscience 13: 531-538.

ManzkeU.PodlouckyR. (1995): Der Laubfrosch Hyla arborea L. in Niedersachsen und Bremen – Verbreitung, Lebensraum, Bestandssituation. In: Der Laubfrosch (Hyla arborea) – Ökologie und Artenschutz. Mertensiella 6 p.  57-72. GeigerA. Ed. Bonn.

NeiM. (1987): Molecular Evolutionary Genetics. Columbia University PressNew York.

OlivieriG.L.SousaV.ChikhiL.RadespielU. (2008): From genetic diversity and structure to conservation: Genetic signature of recent population declines in three mouse lemur species (Microcebus spp.). Biol. Cons. 141: 1257-1271.

PaetkauD.SladeR.BurdenM.EstoupA. (2004): Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol. Ecol. 13: 55-65.

PelletJ.GuisanA.PerrinN. (2004a): A concentric analysis of the impact of urbanization on the threatened European tree frog in an agricultural landscape. Cons. Biol. 18: 1599-1606.

PelletJ.HoehnS.PerrinN. (2004b): Multiscale determinants of tree frog (Hyla arborea L.) calling ponds in western Switzerland. Biodivers. Conserv. 13: 2227-2235.

PelletJ.SchmidtB.R.FivazF.PerrinN.GrossenbacherK. (2006): Density, climate and varying return points: an analysis of long-term population fluctuations in the threatened European tree frog. Oecologia 149: 65-71.

PiryS.LuikartG.CornuetJ.M. (1999): BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90: 502-503.

PiryS.AlapetiteA.CornuetJ.M.PaetkauD.BaudouinL.EstoupA. (2004): GENECLASS2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95: 536-539.

PoschadelJ.R.MöllerD. (2004): A versatile field method for tissue sampling on small reptiles and amphibians, applied to pond turtles, newts, frogs and toads. Conserv. Genet. 5: 865-867.

PritchardJ.K.StephensM.DonnellyP. (2000): Inference of population structure using multilocus genotype data. Genetics 155: 945-959.

RannalaB.MountainJ.L. (1997): Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. USA 94: 9197-9201.

RayN.LehmannA.JolyP. (2002): Modeling spatial distribution of amphibian populations: a GIS approach based on habitat matrix permeability. Biodivers. Conserv. 11: 2143-2165.

ReedD.H.FrankhamR. (2003): Correlation between fitness and genetic diversity. Cons. Biol. 17: 230-237.

RiceW.R. (1989): Analyzing tables of statistical tests. Evolution 43: 223-225.

RileyS.P.D.PollingerJ.P.SauvajotR.M.YorkE.C.BromleyC.FullerT.K.WayneR.K. (2006): A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol. Ecol. 15: 1733-1741.

RoussetF. (1997): Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219-1228.

RoweG.BeebeeT.J.C. (2007): Defining population boundaries: use of three Bayesian approaches with microsatellite data from British natterjack toads (Bufo calamita). Mol. Ecol. 16: 785-796.

RoweG.BeebeeT.J.C.BurkeT. (2000): A microsatellite analysis of natterjack toad, Bufo calamita, metapopulations. Oikos 88: 641-651.

SpearS.F.PetersonC.R.MatocqM.D.StorferA. (2006): Molecular evidence for historical and recent population size reductions of tiger salamanders (Ambystoma tigrinum) in Yellowstone National Park. Conserv. Genet. 7: 605-611.

StumpelA.H.P.HanekampG. (1986): Habitat and ecology of Hyla arborea in the Netherlands. In: Studies in Herpetology p.  409-411. RocekZ. Ed. Charles UniversityPrague.

TempleH.J.CoxN.A. (2009): European Red List of Amphibians. Office for Official Publications of the European CommunitiesLuxembourg.

TesterU.FloryC. (1995): Zur Bedeutung des Biotopverbundes beim Schutz des Laubfrosches (Hyla arborea L.). In: Der Laubfrosch (Hyla arborea) – Ökologie und Artenschutz. Mertensiella 6 p.  27-40. GeigerA. Ed. Bonn.

Van OosterhoutC.HutchinsonW.F.WillsD.P.M.ShipleyP. (2004): MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538.

VeithM.SchmittT. (2008): Möglichkeiten und Grenzen der Naturschutzgenetik. Z. Feldherpetol. 15: 119-138.

VosC.C.Antonisse-De JongA.G.GoedhartP.W.SmuldersM.J.M. (2001): Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86: 598-608.

WeirB.S.CockerhamC.C. (1984): Estimating F-statistics for the analysis of population-structure. Evolution 38: 1358-1370.

WoodP.J.GreenwoodM.T.AgnewM.D. (2003): Pond biodiversity and habitat loss in the UK. Area 35: 206-216.


  • View in gallery

    Distribution of the European tree frog and sampling sites of this study in the region of Hannover which is fragmented by motorways. Sampling site 11 (not shown) is located ca. 140 km in the northeast of Hannover at the River Elbe. Outline map in the right corner shows the location of the survey area in Germany.

  • View in gallery

    Isolation by distance plots. (a) Dest∕(1 − Dest) versus log geographic distance and (b) FST∕(1 − FST) versus Log geographic distance. Lines are the RMA (reduced major axis) regression (Dest: r=0.67, P=0.0025; FST: r=0.59, P=0.0035).

  • View in gallery

    The (a) log likelihood [Pr(X|K)] (± SD) and (b) ΔK for a given number of population clusters (K) in European tree frogs. The graph shows that most of the population structure is captured by setting K=2 (highest value for ΔK), while further subdivision in both clusters is indicated by increasing [Pr(X|K)] until K=5 to K=7 with subsequent decline in these values. See Appendix 1 for graphs of subsequent analyses.

  • View in gallery

    Structure bar plots for (a) the whole dataset (K=2) and the following analyses of (b) sampling sites 1-6 (K=2) and (c) sampling sites 7-11 (K=3). The numbers 1-11 indicate the sampling sites (ID in table 1) the letters A-E the inferred genetic clusters. Each individual is represented by a single vertical line broken into K-coloured segments, with lengths proportional to each of the K-inferred clusters.

  • View in gallery

    The (a, c) log likelihood [Pr(X|K)] (± SD) and (b, d) ΔK for a given number of population clusters (K) in European tree frogs. Graphs a and b correspond to the sub-cluster in fig. 4b, and graphs c and d correspond to the sub-cluster in fig. 4c.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 26 26 12
Full Text Views 22 22 11
PDF Downloads 12 12 5
EPUB Downloads 0 0 0