Mitochondrial DNA reveals high genetic divergence between populations of Chalcides mertensi Klausewitz, 1954 (Reptilia: Scincidae) from Tunisia

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Genetic diversity of four populations of Chalcides mertensi (Klausewitz, 1954) from Tunisia was analyzed by means of the Restriction Fragment Length Polymorphism (RFLP) analysis of two fragments of mitochondrial DNA (mtDNA) encompassing NADH dehydrogenase subunits 1 and 2 (ND-1/2) and NADH dehydrogenase subunits 3, 4 and 4L (ND-3/4). Phylogenetic relationships between haplotypes were inferred by analysing the sequence of 396 base pairs at the 5′ end of the mitochondrial gene encoding cytochrome b and a segment of 12S rRNA gene (386 bp). The results of this study highlighted a pronounced genetic divergence between the populations from northern (Ain Soltane and Tabarka) and southern (Kasserine and Sidi Bouzid) Tunisia, that the phylogenetic analysis recovered as two distinct taxonomic entities. These two groups of populations can therefore be ascribed to two distinct taxa, with southern populations probably representing the typical C. mertensi, whereas northern individuals are likely to represent a new species of grass swimming Chalcides. The divergence between these two taxonomic entities can be referred to palaeogeographic and palaeoclimatic events that have affected northwestern Africa during the last 10 Million years. The analysed populations show a low genetic variability that can be related to the past climatic and geologic events and the colonization processes that took place with environmental amelioration, and to the peripheral position of these populations in the distributional range of the species. However, a more exhaustive study, including Algerian and Moroccan skink populations will be necessary in order to clarify these issues.

Mitochondrial DNA reveals high genetic divergence between populations of Chalcides mertensi Klausewitz, 1954 (Reptilia: Scincidae) from Tunisia

in Amphibia-Reptilia

Sections

References

AviseJ.C. (1994): Molecular Markers Natural History and Evolution. Chapman and HallNew York.

BrownR.P.SuárezN.M.PestanoJ. (2002): The Atlas mountains as a biogeographical divide in North-West Africa: evidence from mtDNA evolution in the Agamid lizard Agama impalearis. Mol. Phylogenet. Evol. 24: 324-332.

CaputoV. (1993): Taxonomy and evolution of the Chalcides chalcides complex (Reptilia, Scincidae) with description of two new species. Boll. Mus. Reg. Sci. Nat.-Torino 11: 47-120.

CaputoV. (2004): The cranial osteology and dentition in the scincid lizards of the genus Chalcides (Reptilia, Scincidae). Ital. J. Zool. 71: 35-45.

CaputoV.LanzaB.PalmieriR. (1995): Body elongation and limb reduction in the genus Chalcides Laurenti, 1768 (Squamata: Scincidae). Trop. Zool. 8: 95-152.

CarranzaS.ArnoldE.N.GeniezPh.RocaJ.L.MateoJ.A. (2008): Radiation, multiple dispersal and parallelism in Moroccan skinks, Chalcides and Sphenops (Squamata: Scincidae), with comments on Scincus and Scincopus and the age of the Sahara Desert. Mol. Phylogenet. Evol. 46: 1071-1094.

CarringtonD.P.GallimoreR.G.KutzbachJ.E. (2001): Climate sensitivity to wetlands and wetland vegetation in mid-Holocene North Africa. Climate Dynamics 17: 151-157.

CharcoJ. (1999): El bosque mediterráneo en el norte de Africa: biodiversidad y lucha contra desertificación. Agencia Española nde Cooperación Internacional Madrid.

CuttelodA.GarcíaN.Abdul MalakD.TempleH.KatariyaV. (2008): The Mediterranean: a Mediterranean hotspot under threat. In: The 2008 Review of the IUCN Red List of Threatened Species. ViéJ.C.Hilton-TaylorC.StuartS.N. Eds IUCNGland.

DarribaD.TaboadaG.L.DoalloR.PosadaD. (2012): jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.

DouadyC.J.CatzeflisF.RamanJ.SpringerM.S.StanhopeM.J. (2003): The Sahara as a vicariant agent, and the role of Miocene climatic events, in the diversification of the mammalian order Macroscelidea (elephant shrews). Proc. Natl. Acad. Sci. USA 100: 8325-8330.

DrummondA.J.SuchardM.A.XieD.RambautA. (2012): Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29(8): 1969-1973.

EckertC.G.SamisK.E.LougheedS.C. (2008): Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol. Ecol. 17: 1170-1188.

ExcoffierL.SmouseP.E.QuattroJ.M. (1992): Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491.

FelsensteinJ. (1985): Confidence-limits on phylogenies – an approach using the bootstrap. Evolution 39: 783-791.

GiovannottiM.Nisi CerioniP.KalboussiM.ApreaG.CaputoV. (2007): Phylogeographic inferences from the mtDNA variation of the three-toed skink, Chalcides chalcides (Reptilia: Scincidae). J. Exp. Zool. (Mol. Dev. Evol.) 308B: 297-307.

GreerA.E.CaputoV.LanzaB.PalmieriR. (1998): Observation on limb reduction in the scincid lizard genus Chalcides. J. Herpetol. 32: 244-252.

GuindonS.DufayardJ.-F.LefortV.AnisimovaM.HordijkW.GascuelO. (2010): New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59: 307-321.

HewittG.M. (1996): Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247-276.

HewittG.M. (2000): The genetic legacy of Quaternary ice ages. Nature 405: 907-913.

HuelsenbeckJ.P.RonquistF.P. (2001): MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.

JaarolaM.TegelstromH. (1996): Mitochondrial DNA variation in the field vole (Microtus agrestis): regional population structure and colonization history. Evolution 50: 2073-2085.

KlausewitzW. (1954): Eidonomische, taxonomische und tiergeographische Untersuchungen über Rassenkreis der Scincides Chalcides chalcides und C. striatus. Senckenbergiana 34: 187-203.

KocherT.D.ThomasW.K.MeyerA.EdwardsS.V.PääboS.VillablancaF.X.WilsonA.C. (1989): Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86: 6196-6200.

KorniliosP.KyriaziP.PoulakakisN.KumlutasY.IlgazÇ.MylonasM.LymberakisP. (2010): Phylogeography of the ocellated skink Chalcides ocellatus (Squamata, Scincidae), with the use of mtDNA sequences: A hitch-hiker’s guide to the Mediterranean. Mol. Phylogenet. Evol. 54: 445-456.

LarkinM.A.BlackshieldsG.BrownN.P.ChennaR.McGettiganP.A.McWilliamH.ValentinF.WallaceI.M.WilmA.LopezR.ThompsonJ.D.GibsonT.J.HigginsD.G. (2007): ClustalW and ClustalX version 2.0. Bioinformatics 23: 2947-2948.

LenkP.FritzU.JoggerU.WinksM. (1999): Mitochondrial phylogeography of the European pond turtle, Emys orbicularis (Linnaeus, 1758). Mol. Ecol. 8: 1911-1922.

McElroyD.MoranP.E.BerminghamE.KornfieldI. (1991): REAP. The restriction enzyme analysis package version 4.0. Department of Zoology Migratory Fish Research Institute and Centre for Marine Studies University of Maine Orono ME.

MirasJ.A.M.JogerU.PleguezelosJ.SlimaniT.El MoudenH.GeniezP. (2006): Chalcides mertensi. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. www.iucnredlist.org. Downloaded on 20 May 2013.

NielsenE.E.HansenM.M.MensbergK.-L. (1998): Improved primer sequences for the mitochondrial ND1, ND3/4 and ND5/6 segments in salmonid fishes: application to RFLP analysis of Atlantic salmon. J. Fish Biol. 50: 216-220.

PalumbiS.R. (1996): Nucleic acids II: the polymerase chain reaction. In: Molecular Systematics p.  205-248. HillisD.M.MoritzC.MableB.K. Eds SinauerSunderland, MA.

PrenticeI.C.JollyD. (2000): Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J. Biogeogr. 27: 507-519.

RambautA.DrummondA.J. (2009): Tracer version 1.5 [computer program]. http://beast.bio.ed.ac.uk.

RoffD.A.BentzenP. (1989): The statistical analysis of mitochondrial DNA polymorphisms: χ2 and the problem of small samples. Mol. Biol. Evol. 6: 539-545.

RonquistF.TeslenkoM.van der MarkP.AyresD.L.DarlingA.HöhnaS.LargetB.LiuL.SuchardM.A.HuelsenbeckJ.P. (2012): MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61(3): 539-542.

SambrookJ.FritschE.F.ManiatisT. (1989): Molecular Cloning: a Laboratory Manual. Cold Spring Harbor LaboratoryCold Spring Harbor, NY.

SchleichH.H.KästleW.KabischK. (1995): Amphibians and Reptiles of North Africa. Biology Systematics Field Guide. Koeltz Scientific BooksKoenigstein.

SchneiderS.RoessliD.ExcoffierL. (2000): Arlequin version 2.000: a software for population genetic data analysis. Genetics and Biometry Laboratory University of Geneva Geneva Switzerland.

SchusterM.DuringerP.GhienneJ.F.VignaudP.MackayeH.T.LikiusA.BrunetM. (2006): The age of the Sahara desert. Science 311: 821.

SindacoR.JeremčenkoV. (2008): The Reptiles of the Western Palearctic p.  1-579. Edizioni Belvedere.

SorensonM.D.AstJ.C.DimcheffD.E.YuriT.MindellD.P. (1999): Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol. Phylogenet. Evol. 12: 105-114.

SteiningerF.F.RöglF. (1984): Paleogeography and palinspatic reconstruction of the Neogene of the Mediterranean and Paratethys. In: The Geological Evolution of the Eastern Mediterranean p.  659-668. DixonJ.E.RobertsonA.H.F. Eds Blackwell Scientific PublicationsOxford.

TamuraK.NeiM. (1993): Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512-526.

TamuraK.PetersonD.PetersonN.StecherG.NeiM.KumarS. (2011): MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28(10): 2731-2739.

WilcoxT.P.ZwicklD.J.HeathT.A.HillisD.M. (2002): Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Mol. Phylogenet. Evol. 25: 361-371.

Figures

  • View in gallery

    Map showing Chalcides mertensi distributional range (in grey), as reported in IUCN Red List of Threatened Species (Miras et al., 2006). Sampling locations are indicated by solid circles and capital letters. ASO: Ain Soltane; KAS: Kasserine; SIB: Sidi Bouzid; TAB: Tabarka.

  • View in gallery

    Maximum Likelihood tree depicting the phylogenetic relationships among the 25 sequence haplotypes based on the combined data set 12S + Cyt b. Bootstrap values higher than 50 and pp values higher than 0.95 are indicated at nodes. Below the branch, left of the node, the age of the most recent ancestor for some of the haplotype lineages is indicated. The date is reported as a mean and expressed in millions of years (Ma), followed by standard error, and 95% Highest Posterior Density (HPD) intervals in parentheses. Haplotype codes as in table 1.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 15 15 9
Full Text Views 38 38 26
PDF Downloads 6 6 2
EPUB Downloads 0 0 0