Genome dosage effect and colouration features in hybridogenetic water frogs of the Pelophylax esculentus complex

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

There are three taxons of central European water frogs of the Pelophylax esculentus complex: two morphologically distinct species, Pelophylax lessonae (LL) and Pelophylax ridibundus (RR), and hybrids Pelophylax esculentus, which can be either diploid (RL) or triploid (LLR or RRL). The morphology of hybrids is supposed to follow genome dosage effect. We describe colouration of water frogs with genome composition verified by chromosome analysis. Typical colouration features in LL were: spots on the ventral side, brown limbs, “weak” femur spotting pattern, brown dorsal folds and yellow-green colour in “waist”. Typical RR had dark-green or olive-green limbs, “full” femur spotting pattern, no hip spot and no yellow colour in “waist”. For all hybrids the most typical features were strong spots on the ventral side and a mosaic of green and brown colour on limbs. Typical LLR had brown-greenish dorsal folds underlined by a partial black line, “weak” femur spotting pattern and yellow-greenish colour in “waist” and on femur. Typical RL had greenish hind limbs, green dorsal folds, no yellow colour in “waist”, and no hip spot. Typical RRL was similar to RL, but had a continuous black line under dorsal folds. There were, however, numerous exceptions to these trends, with the most prominent being much higher than expected variability of colouration of Pelophylax lessonae. Therefore caution must be advised when trying to estimate genome composition of water frogs solely on the basis of colouration.

Genome dosage effect and colouration features in hybridogenetic water frogs of the Pelophylax esculentus complex

in Amphibia-Reptilia

Sections

References

BergerL. (1964): Is Rana esculenta lessonae Camerano a distinct species? Annales Zoologici 22 (13): 245-261.

BergerL. (1966): Biometrical studies on the population of green frogs from the environs of Poznań. Annales Zoologici 23 (11): 303-324.

BergerL. (1968): Morphology of the F1 generation of various crosses within Rana esculenta-complex. Acta Zoologica Cracoviensia 13 (13): 301-324.

BergerL. (1970): Some characteristics of the crosses within Rana esculenta complex in postlarval development. Annales Zoologici 27 (17): 373-416.

BergerL. (1973a): Systematics and hybridization in European green frogs of Rana esculenta complex. Journal of Herpetology 7 (1): 1-10.

BergerL. (1973b): Some characteristics of backcrosses within forms of Rana esculenta complex. Genetica Polonica 14 (4): 413-430.

BergerL. (1976): Hybrids of B2 generations of european water frogs (Rana esculenta complex). Annales Zoologici 33 (12): 201-214.

BergerL. (1979): Egg size as an index of phenotype in progeny of Rana esculenta females. Mitt. Zool. Mus. Berlin 55 (1): 187-202.

BergerL. (2000): Płazy i gady Polski. Klucz do oznaczania. Warszawa-Poznań Wydawnictwo Naukowe PWN.

BergerL.GüntherR. (1988): Genetic composition and reproduction of water frog populations (Rana kl. esculenta Synklepton) near nature reserve Serrahn, GDR. Arch. Nat. schutz Ladsch. forsch. 28 (4): 265-280.

BergerL.RoguskiH. (1978): Ploidy of progeny from different egg size classes of Rana esculenta L. Folia Biol. 26 (4): 231-248.

BergerL.TruszkowskiJ. (1980): Viability and inheritance of characters in water frogs (Rana esculenta complex) in agrocenozes. Genetica Polonica 21 (3): 309-323.

BergerL.RoguskiH.UzzellT. (1978): Triploid F2 progeny of water frogs (Rana esculenta complex). Folia Biol. 26 (3): 135-152.

BergerL.HotzH.RoguskiH. (1986): Diploid eggs of Rana esculenta with two Rana ridibunda genomes. Proceedings of the Academy of Natural Sciences of Philadelphia 138 (1): 1-13.

BorkinL.J.A.GaraninW.I.TichenkoN.T.ZauneI.A. (1979): Some results in the green frogs survey in the USSR. Mitt. Zool. Mus. Berlin 55 (1): 153-170.

ChristiansenD.JakobC.ArioliM.RoethlisbergerS.ReyerH.U. (2010): Coexistence of diploid and triploid hybrid water frogs: population differences persist in the apparent absence of differential survival. BMC Ecology 10: 14.

FøgK. (1994): Water frogs in Denmark: population types and biology. Zoologica Poloniae 39 (3-4): 305-330.

GüntherR. (1990): Die Wasserfrösche Europas. A. Ziemsen VerlagWittenberg Lutherstadt.

HemmerH. (1977): Studien an einer nordwetdeutschen Grünfroschpopulation als Beitrag zur Bestimmungsproblematik und zur Rolle der Selektion im Rana esculenta-Komplex. Slamandra 13 (3-4): 166-173.

HeppichS. (1978): Hybridogenesis in Rana esculenta: C-band karyotypes of Rana ridibunda, Rana lessonae and Rana esculenta. Z. zool. Syst. Evolut.-forsch. 16: 27-39.

HeppichS.TunnerH.G. (1979): Chromosomal constitution and C-banding in homotypic Rana esculenta crosses. Mitt. Zool. Mus. Berlin 55 (1): 111-114.

HeppichS.TunnerH.G.GreilhuberJ. (1982): Premeiotic chromosome doubling after genome elimination during spermatogenesis of the species hybrid Rana esculenta. Theor. Appl. Genet. 61: 101-104.

JuszczykW. (1987): Płazy i gady krajowe. Wydawnictwo Naukowe PWNWarszawa.

KierzkowskiP.PaśkoŁ.RybackiM.SochaM.OgielskaM. (2011): Genome dosage effect and hybrid morphology — the case of the hybridogenetic water frogs of the Pelophylax esculentus complex. Ann. Zool. Fennici 48: 56-66.

LegendreP.LegendreL. (1998): Numerical Ecology2nd English Edition pp.  451-476. Elsevier Science BVAmsterdam.

NekrasovaO.D. (2002): Interspecific variability and colouring polymorphism of green frogs Rana esculenta complex (Amphibia, Ranidae) in hybrid populations. Vestnik Zoologii 36 (4): 47-54.

OgielskaM.KierzkowskiP.RybackiM. (2004): DNA content and genome composition of diploid and triploid water frogs belonging to the Rana esculenta complex (Amphibia, Anura). Canadian Journal of Zoology 82: 1894-1901.

PlötnerJ. (2005): Die Westpaläarktischen Wasserfrösche. Beiheft Zeitschrift für Feldherpetologie 9: 1-160.

PlötnerJ. (2010): Möglichkeiten und Grenzen morphologisher Methoden zur Artbestimmung bei europäischen Wasserfröschen (Pelophylax esculentus-Komplex). Zeitschrift für Feldherpetologie 17: 129-146.

PlötnerJ.BeckerC.PlötnerK. (1994): Morphometric and DNA investigations into European water frogs (Rana kl. esculenta Synklepton (Anura, Ranidae)) from different population systems. Journal of Zoological Systematics and Evolutionary Research 32: 193-210.

RybackiM. (1994a): Water frogs (Rana esculenta complex) of the Bornholm island, Denmark. Zoologica Poloniae 39 (3-4): 331-344.

RybackiM. (1994b): Structure of water frog populations (Rana esculenta complex) of the Wolin island, Poland. Zoologica Poloniae 39 (3-4): 345-364.

StatSoft Inc. (2011): STATISTICA (data analysis software system) version 10 www.statsoft.com.

TunnerH.G. (1970): Das Serumeiweißbild einheimischer Wasserfrösche und der Hybridcharakter von Rana esculenta. Verh. d. Dtsch. Zool. Ges. 23: 352-358.

TunnerH.G. (2000): Evidence for genomic imprinting in unisexual triploid hybrid frogs. Amphibia-Reptilia 21: 135-141.

UzzellT.BergerL. (1975): Electrophoretic phenotypes of Rana ridibunda, Rana lessonae and their hybridogenetic associate, Rana esculenta. Proceedings of The Academy of Natural Sciences of Philadelphia 127 (2): 13-24.

UzzellT.BergerL.GüntherR. (1975): Diploid and triploid progeny from a diploid female of Rana esculenta (Amphibia, Salientia). Proceedings of The Academy of Natural Sciences of Philadelphia 27 (11): 81-91.

UzzellT.GüntherR.BergerL. (1977): Rana ridibunda and Rana esculenta: a leaky hybridogenetic system (Amphibia, Salientia). Proceedings of the Academy of Natural Sciences of Philadelphia 128 (9): 147-171.

ZaleśnaA.CholevaL.OgielskaM.RábováM.MarecF.RábP. (2011): Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization. Cytogenet Genome Res. 134: 206-212.

Figures

  • View in gallery

    Colouration features of the water frogs. Location on the feature on the body of the frog, pictures of the states, and number of water frog individuals of a particular genotype, displaying particular state (four shades of grey represent: 1-10; 11-20; 21-30; 31 and more individuals). Some rows do not add up to 100% due to rounding of percentages to integers. Differences in colouration are visible in the PDF version where pictures are reproduced in colour. This figure is published in colour in the online version.

  • View in gallery

    Colouration features of the water frogs, continued. Location on the feature on the body of the frog, pictures of the states, and number of water frog individuals of a particular genotype, displaying particular state (four shades of grey represent: 1-10; 11-20; 21-30; 31 and more individuals). Some rows do not add up to 100% due to rounding of percentages to integers. Differences in colouration are visible in the PDF version where pictures are reproduced in colour. This figure is published in colour in the online version.

  • View in gallery

    Correspondence analysis. Location of points representing frequency profiles of genotypes and colouration states of each feature along Dimension 1 and Dimension 2.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 10 10 6
Full Text Views 9 9 8
PDF Downloads 3 3 2
EPUB Downloads 0 0 0