Life history trait differences between a lake and a stream-dwelling population of the Pyrenean brook newt (Calotriton asper)

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


The Pyrenean brook newt (Calotriton asper) is a salamandrid that mostly lives in fast running and cold mountain-streams, although some populations are also found in lakes. In the present work, we report in detail on the occurrence of facultative paedomorphosis traits in a population from a Pyrenean high altitude lake. We compare its morphology, life history traits and mitochondrial DNA variation with a nearby lotic metamorphic population. Our results indicate that the lacustrine newts are smaller and present a less developed sexual dimorphism, smooth skin, and that 53% of the adults retain gills at different degrees of development, but not gill slits. Although both populations and sexes have the same age at sexual maturity (four years), the lacustrine population presents higher longevity (12 and 9 years for males and females, respectively) than the one living in the stream (8 and 9 years). The variation on the climatic conditions at altitudinal scale is probably the main cause of the differences in life history traits found between the two populations. The food availability, which could to be limiting in the lacustrine population, is another factor that can potentially affect body size. These results are congruent with the significant mitochondrial DNA genetic isolation between populations, probably a consequence of the lack of juvenile dispersal. We found low cytochrome b variability and significant genetic structuring in the lake population that is very remarkably considering the short distance to the nearby stream population and the whole species’ pattern. We suggest that a bottleneck effect and/or phenotypic plasticity may have resulted in the appearance of a paedomorphic morph in the lake.

Life history trait differences between a lake and a stream-dwelling population of the Pyrenean brook newt (Calotriton asper)

in Amphibia-Reptilia



AdolphS.C.PorterW.P. (1996): Growth, seasonality, and lizard life histories: age and size at maturity. Oikos 77: 267-278.

AmatF.OromiN.SanuyD. (2010): Body size, population size, and age structure of adult Palmate newts (Lissotriton helveticus) in Pyrenean Lakes. J. Herpetol. 44: 13-319.

CampenyR.MontoriA.LlorenteG.A. (1986): Nuevos datos sobre la permanencia de caracteres larvarios en individuos adultos de una población de tritón pirenaico (Euproctus asper) en el Valle de Arán. Doñana. Acta Vert. 13: 170-174.

CarranzaS.ArnoldE.N.ThomasR.H.MateoJ.A.López-JuradoL.F. (1999): Status of the extinct giant lacertid lizard Gallotia simonyi simonyi (Reptilia: Lacertidae) assessed using mtDNA sequences from museum specimens. Herpetol. J. 9: 83-86.

CarranzaS.AmatF. (2005): Taxonomy, biogeography and evolution of Euproctus (Amphibia: Salamandridae), with the resurrection of the genus Calotriton and the description of a new endemic species from the Iberian Peninsula. Zool. J. Linn. Soc. 145: 555-582.

Clergue-GazeauM. (1965): Étude comparative de l’Euprocte des lacs et de l’Euprocte cavernicole. Ann. de Spéléol. 20: 301-316.

Clergue-GazeauM.Martínez-RicaJ.P. (1978): Les différents biotopes de l’urodèle pyrénéen, Euproctus asper. Bull. Soc. Hist. Nat. Toulouse 114 (3-4): 461-471.

Del CastilloM. (2004): Morfometría de lagos. Una aplicación a los lagos del Pirineo. Tesis doctoral Universidad de Barcelona 252 pp.

DenoëlM. (2003): How do paedomorphic newts cope with lake drying? Ecography 26: 405-410.

DenoëlM. (2007): Priority areas of intraspecific diversity: Larzac, a global hotspot for facultative paedomorphosis in amphibians. Anim. Conserv. 10: 110-116.

DenoëlM.IvanovicA.DzukicG.KalezicM. (2009): Sexual size dimorphism in the evolutionary context of facultative paedomorphosis: insights from European newts. BMC Evol. Biol. 9: 278.

DenoëlM.JolyP. (2000): Neoteny and progenesis as two heterochronic processes involved in paedomorphosis in Triturus alpestris (Amphibia: Caudata). Proc. R. Soc. London Biol. Sci. 267: 1481-1485.

DenoëlM.JolyP.WhitemanH.H. (2005): Evolutionary ecology of facultative paedomorphosis in newts and salamanders. Biol. Review. 80: 663-671.

DenoëlM.LenaJ.-P.JolyP. (2007): Morph switching in a dimorphic population of Triturus alpestris (Amphibia, Caudata). Evolutionary Ecology 21: 325-335.

García-ParísM.MontoriA.HerreroP. (2004): Amphibia. Lissamphibia. Fauna Ibérica Vol. 24. Museo Nacional de Ciencias Naturales-CSIC Madrid Spain.

Guerrero-CampoJ. (1995): Variación altitudinal y dimorfismo sexual en la coloración y biometría del tritón pirenaico (Euproctus asper, Amphibia-Salamandridae). Lucas Mallada 7: 213-225.

GuillaumeO.CavagnaraF. (2000): Spatial and temporal distribution of Euproctus asper from hypogean and epigean populations: experimental and fieldwork studies. Mem. Biospeol. 25: 145-156.

HallT.A. (1999): BioEdit: a user-friendly biological alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.

HealyW.R. (1974): Population consequences of alternative life histories in Notophthalmus v. viridescens. Copeia 1974: 221-229.

HudsonR.R. (2000): A new statistic for detecting genetic differentiation. Genetics 155: 2011-2014.

HudsonR.R.SlatkinM.MaddisonW.P. (1992): Estimation of levels of gene flow from DNA sequence data. Genetics 132: 583-589.

IstockC.A. (1967): The evolution of complex life cycle phenomena: an ecological perspective. Evolution 21: 592-605.

KalezicM.L.CvetkovicD.DjorovicA.DzukicG. (1996): Alternative life-history pathways: paedomorphosis and adult fitness in European newts (Triturus vulgaris and T. alpestris). J. Zool. Syst. Evol. Res. 34: 1-7.

KayaU.SayimF.BaskaleE.CevikI.E. (2008): Paedomorphosis in the banded newt, Triturus vittatus (Jenyns, 1835). Bel. J. Zool. 138: 196-197.

KutchtaS.R.ParksD.S.WakeD.B. (2009): Pronounced phylogeographic structure on a small spatial scale: geomorphological evolution and lineage history in the salamander ring species Ensatina eschscholtzii in central coastal California. Mol. Phyl. Evol. 50: 240-255.

LeskovarC.OromiN.SanuyD.SinschU. (2006): Demographic life history traits of reproductive natterjack toads (Bufo calamita) vary between northern and southern latitudes. Amphibia-Reptilia 27: 365-375.

LleonartJ.SalatJ.TorresG.J. (2000): Removing allometrics effects of body size in morphological analysis. J. Theor. Biol. 205: 85-93.

MiaudC. (1991): La squelettochronologie chez les Triturus (Amphibia Urodela) à partir d’une étude de Triturus alpestrisT. helveticus et T. cristatus du sud-est de la France. Tissus dur et âge individuel des vertébrés Orstom INRA Paris France.

MiaudC.GuillaumeO. (2005): Variation in age, body size and growth among surface and cave-dwelling populations of the Pyrenean newt, Euproctus asper (Amphibia; Urodela). Herpetologica 61: 241-249.

MiaudC.GuyetantR. (1998): Plasticité et selection sur les traits de vie d’un organisme à cycle vital complexe, la grenouille rousee Rana temporaria (Amphibien: Anoure). Bull. Soc. Zool. France 123: 325-344.

MilaB.CarranzaS.GuillaumeO.ClobertJ. (2010): Marked genetic structuring and extreme dispersal limitation in the Pyrenean brook newt Calotriton asper (Amphibia: Salamandridae) revealed by genome-wide AFLP but not mtDNA. Mol. Ecol. 19: 108-120.

MoenD.S.WiensJ.J. (2009): Phylogenetic evidence for competitively-driven divergence: body-size evolution in Caribbean treefrogs (Hylidae: Osteopilus). Evolution 63: 195-214.

MontoriA. (1990): Skeletochronological results in the pyrenean newt Euproctus asper (Dugès, 1852) from one prepyrenean population. Annales des Sciences Naturelles Zoologie 11: 209-211.

MontoriA.LlorenteG.A.García-ParísM. (2008): Allozyme differentiation among populations of the Pyrenean newt Calotriton asper (Amphibia: Caudata) does not mirror their morphological diversification. Zootaxa 1945: 39-50.

MorrisonC.HeroJ.M. (2003): Geographic variation in life history characteristics of amphibians: a review. J. Anim. Ecol. 72: 270-279.

Olalla-TárragaM.A.RodríguezM.A. (2007): Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann’s rule, urodeles its converse. Glob. Ecol. Biogeo. 16: 606-617.

RoffD.A. (2001): Life History Evolution. Sinauer AssociatesSunderland, MA.

RozasJ.RozasR. (1999): DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15: 174-175.

RyanT.J.SemlitschR.D. (1998): Intraspecific heterochrony and life history evolution: decoupling somatic and sexual development in a facultatively paedomorphic salamander. Proc. National Acad. Sci. USA 95: 5643-5648.

Serra-CoboJ.UibleinF.Martinez-RicaJ.P. (2000): Variation in sexual dimorphism between two populations of the Pyrenean salamander Euproctus asper from ecologically different mountain sites. Bel. J. Zool. 130: 39-45.

SindacoR.DoriaG.RazzettiE.BerniniF. (2006): Atlas of Italian Amphibians and Reptiles. Edizioni PolistampaFirenze, Italia.

StaubN.L.BrownC.W.WakeD.B. (1995): Patterns of growth and movements in a population of Ensatina eschscholtzii platensis (Caudata: Plethodontidae) in the Sierra Nevada, California. J. Herpetol. 29: 593-599.

StearnsS.C. (2000): Life history evolution: successes, limitations and prospects. Naturwissenschaften 87: 476-486.

TilleyS.G. (1980): Life histories and comparative demography of two salamander populations. Copeia 1980: 806-821.

VossS.R. (1995): Genetic basis of paedomorphosis in the axolotl, Ambystoma mexicanum: a test of the single-gene hypothesis. J. Hered. 86: 441-447.

WagnerA.SchabetsbergerR.SztatecsnyM.KaiserR. (2011): Skeletochronology of phalanges underestimates the true age of long-lived Alpine newts (Ichthyosaura alpestris). Herpetol. J. 21: 145-148.

WhitemanH.H. (1994): Evolution of facultative paedomorphosis in salamanders. Quart. Review Biol. 69: 205-221.

WhitemanH.H.WissingerS.A.BrownW.S. (1996): Growth and foraging consequences of facultative paedomorphosis in the tiger salamander, Ambystoma trigrinum nebulosum. Evol. Ecol. 10: 433-446.

WhitemanH.H.WissingerS.A.DenoëlM.MecklinC.J.GerlancN.M.GutrichJ.J. (2012): Larval growth in polyphenic salamanders: making the best of a bad lot. Oecologia 168: 109-118.

WilburH.M. (1996): Multistage life cycles. In: Population Dynamics in Ecological Space and Time p.  75-107. RhodesO.E.ChesserR.K.SmithM.H. Eds University of Chicago PressChicago, USA.

WilburH.M.CollinsJ.P. (1973): Ecological aspects of amphibian metamorphosis. Science 182: 1305-1314.


  • View in gallery

    Morphological differences between the lacustrine and stream-dweller newts. (A) Paedomorphic female living in the studied lake, showing the typical slender body shape and smooth skin, and with gills in some degree of reabsorption; detailed in (B). (C) Typical male from the nearby stream population showing extensive roughness and keratinized warts, and robust body form. This figure is published in colour in the online version.

  • View in gallery

    Plot of the first two PCs of the studied populations of Calotriton asper; lake: black squares (males) and black dots (females); stream: white squares (males) and white dots (females).

  • View in gallery

    Age structure of Calotriton asper from the lake (n=51) and the stream (n=41) populations.

  • View in gallery

    Relationships between gene flow (Fst) and 10-logarithmic geographic distance in the 17 populations of Calotriton asper. Open square: lacustrine and stream-dwelling population comparison; black squares: the rest of comparisons between populations.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 18 18 7
Full Text Views 86 86 80
PDF Downloads 5 5 2
EPUB Downloads 0 0 0