Resistance of morphological and behavioral sexual traits of the palmate newt (Lissotriton helveticus) to bacterial lipopolysaccharide treatment

in Amphibia-Reptilia
No Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Infectious diseases are considered as a significant factor in the global decline of amphibians. In some vertebrates, the assessment of the individual sexual traits can be useful for assessment of their health status and immunocompetence due to trade-off between them and investment in the immune system. Our aim here was to determine whether the trade-off between the expression of sexual morphological and behavioral traits and investment in the immune system is present in an urodele, the Palmate newt (Lissotriton helveticus). The groups of males were injected by solutions of proinflammatory agent, lipopolysaccharide (LPS) from Escherichia coli serotype O:55:B5, at dosages toxic to vertebrates (2 and 10 mg/kg of body mass) or by saline solution only (control groups). They were subsequently measured for variations in body condition and expression of both morphological (filament length, hind-foot-web, crest) and behavioral (courtship frequency) sexual traits. The injection of either LPS or saline solution did not cause any adverse effect on health in any male of all groups. No significant differences in any of the sexual traits were observed between two groups of males injected by LPS and control groups of males indicating the absence of a trade-off between immune response and expression of sexual traits. Our result suggests that measuring morphological or behavioral sexual traits may not be a useful method for monitoring emergence of infectious diseases in the palmate newt.

Resistance of morphological and behavioral sexual traits of the palmate newt (Lissotriton helveticus) to bacterial lipopolysaccharide treatment

in Amphibia-Reptilia



  • AhtiainenJ.J.AlataloR.V.MappesJ.VertainenL. (2004): Deacreased sexual signaling reveals reduced viability in small populations of the drumming wolf spider Hygrolycosa rubrofasciata. Proc. R. Soc. Lond. B 271: 1839-1845.

  • BăncilăR.I.HartelT.PlaiasuR.SmetsJ.CogalniceanuD. (2010): Comparing three body condition indices in amphibians: a case study of yellow-bellied toad Bombina variegate. Amphib. Reptil. 31: 558-562.

  • BercziI.BertókL.BereznaiT. (1966): Comparative studies on the toxicity of Escherichia coli lipopolysaccharide endotoxin in various animal species. Can. J. Microbiol. 12: 1070-1071.

  • BicegoK.C.BrancoL.G.S. (2002): Discrete electrolytic lesion of the preoptic area prevents LPS-induced behavioral fever in toads. J. Exp. Biol. 205: 3513-3518.

  • BicegoK.C.SteinerA.A.Antunes-RodriguesJ.BrancoL.G.S. (2002): Indomethacin impairs LPS-induced behavioral fever in toads. J. Appl. Physiol. 93: 512-516.

  • BirkheadT.R.FletcherF.PellattE.J. (1998): Sexual selection in the zebra finch Taeniopygia guttata: condition, sex traits and immune capacity. Behav. Ecol. Sociobiol. 44: 179-191.

  • BleickerP.A.Rollins-SmithL.A.JacobsD.M.CohenN. (1983): Mitogenic responses of frog lymphocytes to crude and purified preparations of bacterial lipopolysaccharide (LPS). Dev. Comp. Immunol. 7: 483-496.

  • BrownG.P.ShiltonC.M.ShineR. (2011): Measuring amphibian immunocompetence: validation of the phytohemagglutinin skin-swelling assay in the cane toad, Rhinella marina. Methods Ecol. Evol. 2: 341-348.

  • BugbeeT.M.RubenL.N.BeardM.E.ZettergrenL.D. (1983): Antibody-production by different sites and cyclophosphamide-induced immunosuppression of the TNP-LPS response in the Grass frog Rana pipiens. Dev. Comp. Immunol. 7: 569-574.

  • ChenG.RobertJ. (2011): Antiviral immunity in amphibians. Viruses 3: 2065-2086.

  • ChiltonP.M.EmbryC.A.MitchellT.C. (2012): Effects of differences in lipid A structure on TLR4 pro-inflammatory signaling and inflammasome activation. Front. Immunol. 3: 154.

  • CornuauJ.H.RatM.SchmellerD.S.LoyauA. (2012): Multiple signals in the palmate newt: ornaments help when courting. Behav. Ecol. Sociobiol. 66: 1045-1055.

  • CunninghamA.A.LangtonT.E.S.BennettP.M.LewinJ.F.DruryS.E.N.GoughR.E.MacGregorS.K. (1996): Pathological and microbiological findings from incidents of unusual mortality of the common frog (Rana temporaria). Phil. Trans. R. Soc. Lond. B 351: 1539-1557.

  • DaszakP.CunninghamA.A.HyattA.D. (2010): Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science 287: 443.

  • Du PasquierL.SchwagerJ.FlajnikM.F. (1989): The immune system of Xenopus. Ann. Rev. Immunol. 7: 251-275.

  • DunkelbergerJ.R.SongW.-C. (2010): Complement and its role in innate and adaptive immune responses. Cell Res. 20: 34-50.

  • OliveiraC. (2011): Lipopolysaccharides induce changes in the visceral pigmentation of Eupemphix nattereri (Anura: Leiuperidae). Zoology 11: 298-305.

  • FroeseJ.M.W.SmitsJ.E.G.WickstromM.L. (2005): Evaluation of two methods for measuring nonspecific immunity in Tiger salamander (Ambystoma trigrinum). J. Wildlife Dis. 41: 209-217.

  • GreenN.CohenN. (1977): Effect of temperature on serum complement levels in the leopard frog Rana pipiens. Dev. Comp. Immun. 1: 59-64.

  • HayesT.B.CaseP.ChuiS.ChungD.HaeffeleC.HastonK.LeeM.Phoung MaiV.MarjuoaY.ParkerJ.TsuiM. (2006): Pesticide mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact? Environ. Health Perspect. 114(Suppl. 1): 40-50.

  • HegyiG.MøllerA.P.EensM.GaramszegiL.L. (2009): Prevalence of avian influenza and sexual selection in ducks. Behav. Ecol. 20: 1289-1294.

  • HortonT.L.RitchieP.WatsonM.D.HortonJ.D. (1996): NK-like activity against allogeneic tumour cells demonstrated in the spleen of control and thymectomized Xenopus. Immunol. Cell Biol. 74: 365-373.

  • JacotA.ScheuberH.KurtzJ.BrinkhofM.W.G. (2005): Juvenile immune status affects the expression of a sexually selected trait in field crickets. J. Evol. Biol. 18: 1060-1068.

  • KarimaR.MatsumotoS.HigashiH.MatsushimaK. (1999): The molecular pathogenesis of endotoxic shock and organ failure. Mol. Med. Today 5: 123-132.

  • KaufmanJ.VolkH. (1994): The salamander immune system: right and wrong. Axolotl Newsl. 23: 7-23.

  • LeeK.A.MartinL.B.WikelskiM.C. (2005): Responding to inflammatory challenges is less costly for a successful avian invader, the house sparrow (Passer domesticus), than its less-invasive congener. Oecologia 145: 244-251.

  • LemanJ.C.WeddleC.B.GershmanS.N.KerrA.M.OwerG.D.St JohnJ.M.VogelL.A.SakalukS.K. (2009): Lovesick: immunological costs of mating to male sagebrush crickets. J. Evol. Biol. 22: 163-171.

  • LlewellynD.BrownG.P.ThompsonM.B.ShineR. (2011): Behavioral responses to immune-system activation in an Anuran (the Cane toad, Bufo marinus): field and laboratory studies. Physiol. Biochem. Zool. 84: 77-86.

  • LopesP.C.AdelmanJ.WingfieldJ.C.BentleyG.E. (2012): Social context modulates sickness behavior. Behav. Ecol. Sociobiol. 66: 1421-1428.

  • MangoniM.L.EpandR.F.RosenfeldY.PelegA.BarraD.EpandR.M.ShaiY. (2008): Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization. J. Biol. Chem. 283: 22907-22917.

  • ManningM.J.HortonJ.D. (1982): RES structure and function of the amphibia. In: The Reticuloendothelial SystemVol. 3. Phylogeny and Ontogeny p.  424-459. CohenN.SigelM.M. Eds PlenumNew York.

  • MauleA.G.VanderKooiS.P. (1999): Stress-induced immune-endocrine interaction. In: Stress Physiology in Animals p.  205-245. BalmP.H.M. Ed. Sheffield Academic PressSheffield, UK.

  • MooreK.S.BevinsC.L.BrasseurM.M.TomassiniN.TurnerK.EckH.ZasloffM. (1991): Antimicrobial peptides in the stomach of Xenopus laevis. J. Biol. Chem. 266: 19851-19857.

  • Owen-AshleyN.T.WingfieldJ.C. (2006): Seasonal modulation of sickness behavior in free-living northwestern song sparrows (Melospiza melodia morphna). J. Exp. Biol. 209: 3062-3070.

  • PiccioniM.MonariC.KennoS.PericoliniE.GabrielliE.PietrellaD.PeritoS.BistoniF.KozelT.R.VecchiarelliA. (2013): A purified capsular polysaccharide markedly inhibits inflammatory response during endotoxic shock. Infect. Immun. 81: 90-98.

  • RaffelT.R.LeGrosR.P.LoveB.C.RohrJ.R.HudsonP.J. (2009): Parasite age-intensity relationships in red-spotted newts: Does immune memory influence salamander disease dynamics? Intern. J. Parasitol. 39: 231-241.

  • ReillyD.D.TomassiniN.BevinsC.L.ZasloffM. (1994): A paneth cell analogue in Xenopus small intestine expresses antimicrobial peptide genes: conservation of an intestinal host-defense system. J. Histochem. Cytochem. 42: 697-704.

  • ReinertL.K.HarperL.K.WoodhamsD.C.Rollins-SmithL.A. (2010): Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African clawed frog, Xenopus laevis. Infect. Immun. 78: 3981-3992.

  • Rollins-SmithL.A.WoodhamsD.C. (2012): Amphibian immunity – staying in tune with the environment. In: Ecoimmunology p.  92-143. DemasG.E.NelsonR.J. Eds Oxford University PressNew York.

  • Rollins-SmithL.A.RamseyJ.P.ReinertL.K.WoodhamsD.C.LivoL.J.CareyC. (2009): Immune defenses of Xenopus laevis against Batrachochytrium dendrobatidis. Front. Biosci. 1: 68-91.

  • SalvadoriF.TournefierA. (1996): Activation by mitogens and superantigens of axolotl lymphocytes: functional characterization and ontogenic study. Immunology 88: 586-592.

  • SchadichE. (2009): Skin peptide activities against opportunistic bacterial pathogens of the African Clawed Frogs (Xenopus laevis) and three Litoria frogs. J. Herpetol. 43: 173-183.

  • SchadichE.ColeA.L.J. (2010): Pathogenicity of opportunistic bacterial pathogens Aeromonas hydrophila, Klebsiella pneumoniae and Proteus mirabilis towards New Zealand Litoria ewingii frogs. Comp. Med. 60: 114-117.

  • SchadichE.ColeA.L.J.SquireM.MasonD. (2009): Effect of the pesticide carbaryl on the production of the skin antimicrobial peptides of Litoria raniformis frogs. Aust. J. Ecotox. 15: 17-24.

  • SchadichE.MasonD.ColeA.L. (2013): Neutralization of bacterial endotoxins by frog antimicrobial peptides. Microbiol. Immunol. 57: 159-161.

  • ShermanE.BaldwinL.FernandezG.DeurellE. (1991): Fever and thermal tolerance in the toad Bufo marinus. J. Therm. Biol. 16: 297-301.

  • ShermanE.StephensA. (1998): Fever and metabolic rate in the toad Bufo marinus. J. Therm. Biol. 23: 49-52.

  • ToddB.D. (2007): Parasites Lost? An overlooked hypothesis for the evolution of alternative reproductive strategies in amphibians. Am. Nat. 170: 793-799.

  • WoodhamsD.C.Rollins-SmithL.A.BriggsC.J.VredenburgV.T.SimonM.A.BillheimerD.ShakhtourB.ShyrY.HarrisR.N. (2007): Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biol. Cons. 138: 390-398.

  • ZimmermanL.M.VogelL.A.BowdenR.M. (2010): Understanding the vertebrate immune system: insights from the reptilian perspective. J. Exp. Biol. 213: 661-671.

  • ZouJ.BirdS.MinterR.HortonJ.CunninghamC.SecombesC.J. (2000): Molecular cloning of the gene for interleukin-1β from Xenopus laevis and analysis of expression in vivo and in vitro. Immunogenetics 51: 332-338.


  • View in gallery

    Development of morphological traits over the experiment according to experimental treatment (mean ± SE). a) Evolution of BCI (body condition index). b) Development of filament length. c) Development of HFW (hind-foot-web). d) Development of crest size. Black bars correspond to individuals injected with LPS, white bars correspond to individuals injected with saline solution (control), HD corresponds to high dose treatment (10 mg of LPS/kg) and LD corresponds to low dose treatment (2 mg of LPS/kg). NS means that P>0.05. The development of each trait (Δ trait) was calculated as the value of the trait measured at the start of the experiment minus the value of the trait measured at the end of the experiment.

  • View in gallery

    Post-injection courtship frequency according to experimental injection (LPS or saline solution, mean ± SE). NS means that P>0.05. Courtship frequency was measured for each male by counting the number of times this male was observed in courtship after experimental injection.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 30 30 11
Full Text Views 88 88 3
PDF Downloads 8 8 1
EPUB Downloads 0 0 0