Phylogeography and genetic structure of the slow worms Anguis cephallonica and Anguis graeca (Squamata: Anguidae) from the southern Balkan Peninsula

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Two slow worm species are distributed at the southernmost part of the Balkan Peninsula: Anguis cephallonica, an endemic of the Peloponnese and the islands Zakynthos, Ithaki and Kephallonia, and A. graeca. Here, we investigate the intraspecific genetic diversity of A. cephallonica from the Peloponnese and Kephallonia and analyse A. graeca, from the northern Peloponnese, where it is found in sympatry with A. cephallonica. MtDNA and nDNA phylogenetic analyses confirm the genetic similarity of Peloponnesian and Kephallonian populations of A. cephallonica and reveal significant mtDNA genetic variation within it, probably related to the occurrence of multiple subrefugia in the Peloponnese. Peloponnesian A. graeca populations are genetically similar to non-Peloponnesian conspecifics implying recent dispersal to the Peloponnese. In contrast to the genetic markers, morphological characteristics (such as the number of mid-body scale-rows) failed to distinguish between Peloponnesian A. cephallonica and A. graeca. Although the former species is believed to be well-differentiated from its congeneric taxa, a thorough morphological study is needed.

Phylogeography and genetic structure of the slow worms Anguis cephallonica and Anguis graeca (Squamata: Anguidae) from the southern Balkan Peninsula

in Amphibia-Reptilia


ArnoldE.N.OvendenD. (2002): Field Guide of Reptiles and Amphibians of Britain and Europe2nd Edition. Harper CollinsLondon.

AugéM. (2003): La faune de Lacertilia (Reptilia, Squamata) de l’Éocène inférieur de Prémontré (Bassin de Paris, France). Geodiversitas 25: 539-574.

ClementM.PosadaD.CrandallK.A. (2000): TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9: 1657-1660.

DelyO.G. (1981): Anguis fragilis Linnaeus 1758 – Blindschleiche. In: Handbuch der Reptilien und Amphibien Europas Band 1 Echsen (Sauria) 1 p.  241-258. BöhmeW. Ed. AULA-VerlagWiesbaden.

DermitzakisM.D. (1990): Paleogeography, geodynamic processes and event stratigraphy during the late Cenozoic of the Aegean area. Accad. Naz. Lincei 85: 263-288.

FelsensteinJ. (1985): Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.

FelsensteinJ. (2004): Inferring Phylogenies. Sinauer AssociatesSunderland, Massachusetts.

FerentinosG.GkioniM.GeragaM.PapatheodorouG. (2012): Early seafaring activity in the southern Ionian Islands, Mediterranean Sea. J. Archaeol. Sci. 39: 2167-2176.

FraserD.J.BernatchezL. (2001): Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol. Ecol. 10: 2741-2752.

GrillitschH.CabelaA. (1990): Zum systematischen Status der Blindschleichen (Squamata: Anguidae) der Peloponnes und der sódlichen Ionischen Inseln (Griechenland). Herpetozoa 2: 131-153.

GvoždikV.BenkovskýN.CrottiniA.BellatiA.MoravecJ.RomanoA.SacchiR.JandzikD. (2013): An ancient lineage of slow worms, genus Anguis (Squamata: Anguidae), survived in the Italian Peninsula. Mol. Phylogenet. Evol. 69: 1077-1092.

GvoždikV.JandzikD.LymberakisP.JablonskiD.MoravecJ. (2010): Slow worm, Anguis fragilis (Reptilia: Anguidae) as a species complex: Genetic structure reveals deep divergences. Mol. Phylogenet. Evol. 55: 460-472.

HasegawaM.KishinoK.YanoT. (1985): Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22: 160-174.

KorniliosP.IlgazH.KumlutasY.LymberakisP.MoravecJ.SindacoR.Rastegar-PouyaniN.AfrooshehM.GiokasS.Fraguedakis-TsolisS.ChondropoulosB. (2012): Neogene climatic oscillations shape the biogeography and evolutionary history of the Eurasian blindsnake. Mol. Phylogenet. Evol. 62: 856-873.

LarkinM.A.BlackshieldsG.BrownN.P.ChennaR.McGettiganP.A.McWilliamH.ValentinF.WallaceI.M.WilmA.LopezR.ThompsonJ.D.GibsonT.J.HigginsD.G. (2007): ClustalW and ClustalX version 2.0. Bioinformatics 23: 2947-2948.

MaceyR.J.SchulteJ.A.IILarsonA.TuniyevB.S.OrlovN.PapenfussT.J. (1999): Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families. Mol. Phylogenet. Evol. 12: 250-272.

MayerW.GrillitschH.CabellaA. (1991): Proteinelektrophoretische untersuchungen zur systematic der südgriechischen Blindschleichen (Scuamata: Anguidae: Anguis). Hepretozoa 4: 157-165.

PerissoratisC.ConispoliatisN. (2003): The impacts of sea-level changes during latest Pleistocene and Holocene times on the morphology of the Ionian and Aegean seas (SE Alpine Europe). Mar. Geol. 196: 145-156.

PosadaD. (2008): JModelTest – phylogenetic model averaging. Mol. Biol. Evol. 25: 1253-1256.

PoulakakisN.LymberakisP.PafilisP.ValakosE.MylonasM. (2005): Phylogeography of Balkan wall lizard (Podarcis taurica) and its relatives inferred from mitochondrial DNA sequences. Mol. Ecol. 14: 2433-2443.

RambautA.DrummondA.J. (2007): Tracer v1.5.

RonquistF.HuelsenbeckJ.P. (2003): MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.

StamatakisA. (2006): RAxML-VI-HPC – maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.

SzabóK.VörösJ. (2014): Distribution and hybridization of Anguis fragilis and A. colchica in Hungary. Amphibia-Reptilia 35: 135-140.

TamuraK.PetersonD.PetersonN.StecherG.NeiM.KumarS. (2011): MEGA5 – Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.

TavaréS. (1986): Some probabilistic and statistical problems in the analysis of DNA sequences. In: Some Mathematical Questions in Biology – DNA Sequence Analysis p.  57-86. MiuraR.M. Ed. Amer. Math. Soc.Providence, RI.

UrsenbacherS.SchweigerS.TomovićL.Crnobrnja-IsailovićJ.FumagalliL.MayerW. (2008): Molecular phylogeography of the nose-horned viper (Vipera ammodytes): evidence for high genetic diversity and multiple refugia in the Balkan peninsula. Mol. Phylogenet. Evol. 46: 1116-1128.

ValakosE.D.PafilisP.SotiropoulosK.LymberakisP.MaragouP.FoufopoulosJ. (2008): The Amphibians and Reptiles of Greece. Chimaira EditionFrankfurt am Main.


  • View in gallery

    Map showing the sampling localities (A. cephallonica = closed circles, A. greaca = open circles). Numbers refer to specimens’ codes (Supplementary table S1). Black dashed lines show putative distribution of A. cephallonica mtDNA groups. White dashed line represents the Mountain Range of Pindos.

  • View in gallery

    (A) Phylogenetic relationships (BI tree), among the Anguis specimens of the present study, combined with sequences from GenBank. Numbers in terminal nodes refer to specimen codes (fig. 1, Supplementary table S1) and haplotypes from Gvoždík et al. (2010, 2013). Numbers near the nodes are BI posterior probabilities (≥0.50), ML bootstrap values and NJ bootstrap values (≥50) ( = 1.00 pp and 100 bootstraps). (B) Anguis cephallonica mtDNA parsimony network. Lines represent a mutational step, black circles missing haplotypes and open circles known haplotypes. The circle area is proportional to the number of individuals. Probable ancestral haplotypes are given as rectangles. Specimen No. 296 from Mani Peninsula forms a separate haplotype network (not shown). (C) Respective network for A. graeca, including samples of the present study and their connection to haplotypes g1 to g12 (Gvoždík et al. 2010). Haplotypes g13-g14b, g15 and g16 (Gvoždík et al. 2013) form three separate networks, respectively (not shown).


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 20 20 6
Full Text Views 85 85 53
PDF Downloads 9 9 6
EPUB Downloads 0 0 0