A novel mitogenomic rearrangement for Odorrana schmackeri (Anura: Ranidae) and phylogeny of Ranidae inferred from thirteen mitochondrial protein-coding genes

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

We determined the complete nucleotide sequence of the mitochondrial genome of Odorrana schmackeri (family Ranidae). The O. schmackeri mitogenome (18 302 bp) contained 13 protein-coding genes, 2 rRNA genes, 21 tRNA genes and a single control region (CR). In the new mitogenome, the distinctive feature is the loss of tRNA-His, which could be explained by a hypothesis of gene substitution. The new sequence data was used to assess the phylogenetic relationships among 23 ranid species mostly from China using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic analyses support two families (Ranidae, Dicroglossidae) for Chinese ranids. In Ranidae, we support the genus Amolops should be retained in the subfamily Raninae rather than in a distinct subfamily Amolopinae of its own. Meanwhile, the monophyly of the genus Odorrana was supported. Within Dicroglossidae, four tribes were well supported including Occidozygini, Dicroglossini, Limnonectini and Paini. More mitochondrial genomes and nuclear genes are required to decisively evaluate phylogenetic relationships of ranids.

A novel mitogenomic rearrangement for Odorrana schmackeri (Anura: Ranidae) and phylogeny of Ranidae inferred from thirteen mitochondrial protein-coding genes

in Amphibia-Reptilia

Sections

References

AdamsK.L.PalmerJ.D. (2003): Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol. Phylogenet. Evol. 29: 380-395.

AlamM.S.KurabayashiA.HayashiY.SanoN.KhanM.R.FujiiT.SumidaM. (2010): Complete mitochondrial genomes and novel gene rearrangements in two dicroglossid frogs, Hoplobatrachus tigerinus and Euphlyctis hexadactylus, from Bangladesh. Genes Genet. Syst. 85: 219-232.

AndersonS.BankierA.T.BarrellB.G.de BruijnM.H.L.CoulsonA.R.DrouinJ.EperonI.C.NierlichD.P.RoeB.A.SangerF.SchreierP.H.SmithA.J.H.StadenR.YoungI.G. (1981): Sequence and organization of the human mitochondrial genome. Nature 290: 457-465.

BibbM.J.Van EttenR.A.WrightC.T.WalbergM.W.ClaytonD.A. (1981): Sequence and gene organization of mouse mitochondrial DNA. Cell 26: 167-180.

BooreJ.L.BrownW.M. (1998): Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr. Opin. Genet. Develop. 8: 668-674.

BooreJ.L. (1999): Animal mitochondrial genomes. Nucleic Acids Res. 27: 1767-1780.

BossuytF.MilinkovitchM.C. (2000): Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc. Nat. Acad. Sci. USA 97: 6585-6590.

BossuytF.BrownR.M.HillisD.M.CannatellaD.C.MilinkovitchM.C. (2006): Phylogeny and biogeography of a cosmopolitan frog radiation: Late Cretaceous diversification resulted in continent-scale endemism in the family Ranidae. Syst. Biol. 55: 579-594.

CheJ.PangJ.ZhaoH.WuG.F.ZhaoE.M.ZhangY.P. (2007): Molecular phylogeny of the Chinese ranids inferred from nuclear and mitochondrial DNA sequences. Biochem. Syst. Ecol. 35: 29-39.

CheJ.HuJ.S.ZhouW.W.MurphyR.W.PapenfussT.J.ChenM.Y.RaoD.Q.LiP.P.ZhangY.P. (2009): Phylogeny of the Asian spiny frog tribe Paini (Family Dicroglossidae) sensu Dubois. Mol. Phylogenet. Evol. 50: 59-73.

ChenL.MurphyR.W.LathropA.NgoA.OrlovN.L.HoC.T.SomorjaiI.L. (2005): Taxonomic chaos in Asian ranid frogs: an initial phylogenetic resolution. Herpetol. J. 15: 231-243.

ChenX.ChenZ.JiangJ.P.QiaoL.LuY.Q.ZhouK.Y.ZhengG.M.ZhaiX.F.LiuJ.X. (2013): Molecular phylogeny and diversification of the genus Odorrana (Amphibia, Anura, Ranidae) inferred from two mitochondrial genes. Mol. Phylogenet. Evol. 69: 1196-1202.

DuboisA. (1992): Notes sur la classification des Ranidae (Amphibiens Anoures). Bull. Mens. Soc. Linn. Lyon 61: 305-352.

DuboisA. (2005): Amphibia Mundi. 1.1. An ergotaxonomy of recent amphibians. Alytes 23: 1-24.

EmersonS.B.BerriganD. (1993): Systematics of Southeast Asian ranids: multiple origins of voicelessness in the subgenus Limnonectes (Fitzinger). Herpetologica 49: 22-31.

FeiL.YeC.Y.HuangY.Z. (1990): Key to Chinese Amphibia. Chongqing Branch, Science and Technology Literature Publishing HouseChongqing.

FeiL.YeC.Y.JiangJ.P.XieF.HuangY.Z. (2005): An Illustrated Key to Chinese Amphibians. Sichuan Publishing Group and Sichuan Publishing House of Science and TechnologyChengdu.

FeiL.HuS.Q.YeC.Y.HuangY.Z. (2009): Fauna sinica. Amphibia Anura RanidaeVol 3. Science PressBeijing.

FelsensteinJ. (1985): Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.

FengG.WuX.B.YanP.LiX.Q. (2010): Two complete mitochondrial genomes of Crocodylus and implications for crocodilians phylogeny. Amphibia-Reptilia 31: 299-309.

Frazer-AbelA.A.HagermanP.J. (1999): Determination of the angle between the acceptor and anticodon stems of a truncated mitochondrial tRNA. J. Mol. Biol. 285: 581-593.

FrostD.R.GrantT.FaivovichJ.BainR.H.HaasA. (2006): The amphibian tree of life. B. Am. Mus. Nat. Hist. 297: 1-291.

FrostD.R. (2014): Amphibian species of the World: an online reference. Version 6.0. Electronic Database accessible at http://research.amnh.org/herpetology/amphibian/index.html. American Museum of Natural History New York USA.

IrisarriI.San MauroD.AbascalF.OhlerA.VencesM.ZardoyaR. (2012): The origin of modern frogs (Neobatrachia) was accompanied by acceleration in mitochondrial and nuclear substitution rates. BMC Genomics 13: 626.

JiangJ.P.ZhouK.Y. (2001): Evolutionary relationships among Chinese ranid frogs inferred from mitochondrial DNA sequences of 12S rRNA gene. Acta Zool. Sinica 47: 38-44.

JiangJ.P.DuboisA.OhlerA.TillierA.ChenX.XieF.StöckM. (2005): Phylogenetic relationships of the tribe Paini (Amphibia, Anura, Ranidae) based on partial sequences of mitochondrial 12S and 16S rRNA genes. Zool. Sci. 22: 353-362.

JiangJ.P.ZhouK.Y. (2005): Phylogenetic relationships among Chinese ranids inferred from sequence data set of 12S and 16S rRNA. Herpetol. J. 15: 1-8.

KakehashiR.KurabayashiA.OumiS.KatsurenS.HosoM.SumidaM. (2013): Mitochondrial genomes of Japanese Babina frogs (Ranidae, Anura): unique gene arrangements and the phylogenetic positionof genus Babina. Genes Genet. Syst. 88: 59-67.

KitanoT.UmetsuK.TianW.OsawaM. (2007): Two universal primer sets for species identification among vertebrates. Int. J. Legal. Med. 121: 423-427.

KosuchJ.VencesM.DuboisA.OhlerA.BöhmeW. (2001): Out of Asia: mitochondrial DNA evidence for an Oriental origin of tiger frogs, genus Hoplobatrachus. Mol. Phylogenet. Evol. 21: 398-407.

KurabayashiA.UeshimaR. (2000): Complete sequence of the mitochondrial DNA of the primitive opisthobranch gastropod Pupa strigosa: systematic implication of the genome organization. Mol. Biol. Evol. 17: 266-277.

KurabayashiA.YoshikawaN.SatoN.HayashiY.OumiS.FujiiT.SumidaM. (2010): Complete mitochondrial DNA sequence of the endangered frog Odorrana ishikawae (family Ranidae) and unexpected diversity of mt gene arrangements in ranids. Mol. Phylogenet. Evol. 56: 543-553.

MaceyJ.R.LarsonA.AnanjevaN.B.FangZ.PapenfussT.J. (1997): Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol. Biol. Evol. 14: 91-104.

MatsuiM.ShimadaT.LiuW.Z.MaryatiM.KhonsueW.OrlovN. (2006): Phylogenetic relationships of Oriental torrent frogs in the genus Amolops and its allies (Amphibia, Anura, Ranidae). Mol. Phylogenet. Evol. 38: 659-666.

MoritzC.BrownW.M. (1986): Tandem duplication of D-loop and ribosomal RNA sequences in lizard mitochondrial DNA. Science 233: 1425-1427.

MuellerR.L.MaceyJ.R.JaekelM.WakeD.B.BooreJ.L. (2004): Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. Proc. Nat. Acad. Sci. USA 101: 13820-13825.

OjalaD.MontoyaJ.AttardiG. (1981): tRNA punctuation model of RNA processing in human mitochondria. Nature 290: 470-474.

PabijanM.SpolskyC.UzzellT.SzymuraJ.M. (2008): Comparative analysis of mitochondrial genomes in Bombina (Anura; Bombinatoridae). J. Mol. Evol. 67: 246-256.

PosadaD.CrandallK.A. (1998): Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818.

PyronR.A.WiensJ.J. (2011): A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61: 543-583.

RambautA.DrummondA.J. (2007): Tracer v1.5. Distributed by the Authors. http://beast.bio.ed.ac.uk/Trace.

RoeB.A.MaD.P.WilsonR.K.WongJ.F. (1985): The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J. Biol. Chem. 260: 9759-9774.

RoelantsK.JiangJ.BossuytF. (2004): Endemic ranid (Amphibia: Anura) genera in southern mountain ranges of the Indian subcontinent represent ancient frog lineages: evidence from molecular data. Mol. Phylogenet. Evol. 31: 730-740.

RonquistF.HuelsenbeckJ.P. (2003): MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.

RychlikW.RychlikP. (2000): Oligo Primer Analysis Software. Version 6.01. Cascade Colorado: Molecular Biology Insights Inc.

SambrookJ.RussellD.W. (2001): Molecular Cloning: A Laboratory Manual3rd Edition. Cold Spring Harbor Laboratory PressCold Spring Harbor.

San MauroD.GowerD.J.ZardoyaR.WilkinsonM. (2006): A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. Mol. Biol. Evol. 23: 227-234.

SanoN.KurabayashiA.FujiiT.YonekawaH.SumidaM. (2004): Complete nucleotide sequence and gene rearrangement of the mitochondrial genome of the bell-ring frog, Buergeria buergeri (family Rhacophoridae). Genes Genet. Syst. 79: 151-163.

ScottE. (2005): A phylogeny of ranid frogs (Anura: Ranoidea: Ranidae), based on a simultaneous analysis of morphological and molecular data. Cladistics 21: 507-574.

StamatakisA.HooverP.RougemontJ. (2008): A rapid bootstrap algorithm for the RaxML web-servers. Syst. Biol. 57: 758-771.

StuartB.L. (2008): The phylogenetic problem of Huia (Amphibia: Ranidae). Mol. Phylogenet. Evol. 46: 49-60.

SuX.WuX.B.YanP.CaoS.Y.HuY.L. (2007): Rearrangement of a mitochondrial tRNA gene of the concave-eared torrent frog, Amolops tormotus. Gene 394: 25-34.

SumidaM.KanamoriY.KanedaH.KatoY.NishiokaM.HasegawaM.YonekawaH. (2001): Complete nucleotide sequence and gene rearrangement of the mitochondrial genome of the Japanese pond frog Rana nigromaculata. Genes Genet. Syst. 76: 311-325.

SwoffordD.L. (2002): PAUP: Phylogenetic Analysis Using Parsimony Version 4Beta10. Sinauer AssociatesSunderland, MA.

TanakaT.MatsuiM.TakenakaO. (1996): Phylogenetic relationships of Japanese brown frogs (Rana: Ranidae) assessed by mitochondrial cytochrome b gene sequences. Biochem. Syst. Ecol. 24: 299-307.

Tanaka-UenoT.MatsuiM.ChenS.L.TakenakaO.OtaH. (1998): Phylogenetic relationships of brown frogs from Taiwan and Japan assessed by mitochondrial cytochrome b gene sequences (Rana: Ranidae). Zool. Sci. 15: 283-288.

ThompsonJ.D.GibsonT.J.PlewniakF.JeanmouginF.HigginsD.G. (1997): The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acid. Res. 25: 4876-4882.

WielstraB.ArntzenJ.W. (2011): Unraveling the rapid radiation of crested newts (Triturus cristatus superspecies) using complete mitogenomic sequences. BMC Evol. Biol. 11: 162.

WiensJ.J.SukumaranJ.PyronR.A.BrownR.M. (2009): Evolutionary and biogeographic origins of high tropical diversity in Old World frogs (Ranidae). Evolution 63: 1217-1231.

WolstenholmeD.R. (1992): Animal mitochondrial DNA: structure and evolution. In: Mitochondrial Genomes p.  173-216. WolstenholmeD.R.JeonK.W. Eds Academic PressNew York.

WuX.B.WangY.Q.ZhouK.Y.ZhuW.Q.NieJ.S.WangC.L. (2003): Complete mitochondrial DNA sequence of Chinese alligator, Alligator sinensis, and phylogeny of crocodiles. Chinese Sci. Bull. 48: 2050-2054.

YangD.T. (1991): Amphibian-Fauna of Yunnan. China Forestry Publishing HouseBeijing.

ZhangJ.F.NieL.W.WangY.HuL.L. (2009): The complete mitochondrial genome of the large-headed frog, Limnonectes bannaensis (Amphibia: Anura), and a novel gene organization in the vertebrate mtDNA. Gene 442: 119-127.

ZhangP.ZhouH.ChenY.Q.LiuY.F.QuL.H. (2005): Mitogenomic perspectives on the origin and phylogeny of living amphibians. Systematic Biology 54: 391-400.

ZhangP.PapenfussT.J.WakeM.H.QuL.WakeD.B. (2008): Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol. 49: 586-597.

ZhangP.LiangD.MaoR.L.HillisD.M.WakeD.B.CannatellaD.C. (2013): Efficient sequencing of anuran mtDNAs and a mitogenomic exploration of the phylogeny and evolution of frogs. Mol. Phylogenet. Evol. 30: 1899-1915.

ZhouY.ZhangJ.Y.ZhengR.Q.YuB.G.YangG. (2009): Complete nucleotide sequence and gene organization of the mitochondrial genome of Paa spinosa (Anura: Ranoidae). Gene 447: 86-96.

Figures

  • View in gallery

    Comparison of gene arrangements in the mt DNA genomes of O. schmackeri and typical vertebrates. Arrows indicate the rearranged homologous genes. The asterisk indicates the loss of trnH. Genes encoded by the L-strand are underlined.

  • View in gallery

    Schematic diagram of the O. schmackeri mtDNA control region.

  • View in gallery

    Ranid phylogeny inferred from 13 mt protein-coding genes. Bayesian tree is shown here. The ML tree has the same tree topology. Numbers above branches represent Bootstrap support (BP)/Bayesian posterior probability (PP). (1) The classification of Fei et al. (2009); (2) Dubois (2005); (3) Frost et al. (2006, 2014).

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 9 9 8
Full Text Views 11 11 11
PDF Downloads 3 3 3
EPUB Downloads 0 0 0