An evaluation of daily, seasonal and population-level variation in the thermal preference of a group-living lizard, Ouroborus cataphractus (Sauria: Cordylidae)

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Ectotherms are known to function optimally within a specific range of body temperatures, bordered by two set-point values (i.e. preferred temperature range; Tp). Preferred body temperature stands central in understanding behavioural thermoregulation in a thermally dynamic temperate environment. In this study we determined Tp for the group-living cordylid lizard, Ouroborus cataphractus, during the respective annual peak periods in food availability and scarcity. Body temperatures were recorded in ecologically realistic photo-thermal gradients using body-mounted, modified iButtons. In addition to studying seasonal and spatial variation in Tp we also assessed daily variation and among-day repeatability of Tp estimates. The mean Tp among populations and across seasons was 29.8 ± 2.3°C (range: 26.8-32.6°C) and represents the lowest mean Tp and range recorded for any cordylid lizard to date. Literature reports on the seasonal activity patterns and micro-spatial variation in thermal habitat quality of O. cataphractus suggest that the low Tp minimizes thermoregulatory costs during summer, autumn, late winter and spring. The low Tp is therefore expected to relax energy budgets and function as part of the adaptive strategy of the species to survive seasonal food stress in a semi-arid environment. The among-day repeatability of mean Tp varied among populations and across seasons despite exposure conditions that were kept constant. The results of the present study suggest that Tp estimates based on short term laboratory trials may be inaccurate due to potential high among-day individual variation and low repeatability in thermal preference.


Publication of the Societas Europaea Herpetologica



AngillettaM.J.MontgomeryL.G.WernerY.L. (1999): Temperature preference in geckos: Diel variation in juveniles and adults. Herpetologica 55: 212-222.

AngillettaM.J.WernerY.L. (1998): Australian geckos do not display diel variation in thermoregulatory behavior. Copeia 1998: 736-742.

BauwensD.GarlandT.CastillaA.M.Van DammeR. (1995): Evolution of sprint speed in lacertid lizards – Morphological, physiological, and behavioral covariation. Evolution 49: 848-863.

BeaupreS.J.JacobsE.R.LillywhiteH.B.ZamudioK. (2004): Guidelines for use of live amphibians and reptiles in field and laboratory research. Herpetological Animal Care and Use Committee of the American Society of Ichthyologists and Herpetologists.

Blouin-DemersG.NadeauP. (2005): The cost-benefit model of thermoregulation does not predict lizard thermoregulatory behavior. Ecology 86: 560-566.

BranchW.R. (1998): Field Guide to the Snakes and Other Reptiles of Southern Africa, 3rd Edition. Struik Publishers, Cape Town.

BroeckhovenC.MoutonP. leF.N. (2013): Influence of diet on prehension mode in cordylid lizards: a morphological and kinematic analysis. J. Zool. 291: 286-295.

BrownG.P.ShineR. (2002): Influence of weather conditions on activity of tropical snakes. Austral. Ecol. 27: 596-605.

ChristianK.A.BedfordG.S. (1995): Seasonal changes in thermoregulation by the frillneck lizard, Chlamydosaurus kingii, in tropical Australia. Ecology 76: 124-132.

ChristianK.A.BedfordG.S. (1996): Thermoregulation by the spotted tree monitor, Varanus scalaris, in the seasonal tropics of Australia. J. Therm. Biol. 21: 67-73.

ChristianK.A.WeaversB.W. (1996): Thermoregulation of monitor lizards in Australia: An evaluation of methods in thermal biology. Ecol. Monogr. 66: 139-157.

Clusella-TrullasS.BlackburnT.M.ChownS.L. (2011): Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177: 738-751.

Clusella-TrullasS.ChownS.L. (2014): Lizard thermal trait variation at multiple scales: a review. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 184: 5-21.

Clusella-TrullasS.TerblancheJ.S.van WykJ.H.SpotilaJ.R. (2007): Low repeatability of preferred body temperature in four species of cordylid lizards: Temporal variation and implications for adaptive significance. Evol. Ecol. 21: 63-79.

CurrinS.AlexanderG.J. (1999): How to make measurements in thermoregulatory studies: the heating debate continues. Afr. J. Herpetol. 48: 33-40.

CurtinA.J.MoutonP. leF.N.ChinsamyA. (2005): Bone growth patterns in two corylid lizards, Cordylus cataphractus and Cordylus capensis. Afr. Zool. 40: 1-7.

DiazJ.A.Cabezas-DiazS. (2004): Seasonal variation in the contribution of different behavioural mechanisms to lizard thermoregulation. Funct. Ecol. 18: 867-875.

DiazJ.A.IraetaP.MonasterioC. (2006): Seasonality provokes a shift of thermal preferences in a temperate lizard, but altitude does not. J. Therm. Biol. 31: 237-242.

DuW.G. (2006): Preferred body temperature and thermal tolerance of the northern grass lizard Takydromus septentrionalis from localities with different longitudes. Acta Zool. Sin. 52: 478-482.

EffenbergerE.MoutonP. leF.N. (2007): Space use in a multi-male group of the group-living lizard. J. Zool. 272: 202-208.

EffenbergerE. (2004): Social structure and spatial-use in a group-living lizard, Cordylus cataphractus. Unpubl. M.Sc. Thesis, Stellenbosch University, South Africa.

FelsensteinJ. (1985): Phylogenies and the comparative method. Am. Nat. 125: 1-15.

FirthB.T.BelanI. (1998): Daily and seasonal rhythms in selected body temperatures in the Australian lizard Tiliqua rugosa (Scincidae): Field and laboratory observations. Physiol. Zool. 71: 303-311.

FlemmingA.F.MoutonP. leF.N. (2002): Reproduction in a group-living lizard, Cordylus cataphractus (Cordylidae), from South Africa. J. Herpetol. 36: 691-696.

GvozdikL. (2002): To heat or to save time? Thermoregulation in the lizard Zootoca vivipara (Squamata: Lacertidae) in different thermal environments along an altitudinal gradient. Can. J. Zool. 80: 479-492.

GvozdikL.CastillaA.M. (2001): A comparative study of preferred body temperatures and critical thermal tolerance limits among populations of Zootoca vivipara (Squamata: Lacertidae) along an altitudinal gradient. J. Herpetol. 35: 486-492.

HertzP.E.HueyR.B.StevensonR.D. (1993): Evaluating temperature regulation by field-active ectotherms – the fallacy of the inappropriate question. Am. Nat. 142: 796-818.

HoffmannA.A.ChownS.L.Clusella-TrullasS. (2013): Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct. Ecol. 27: 934-949.

HueyR.B. (1982): Temperature, physiology and the ecology of reptiles. In: Biology of the Reptilia, Vol. 12, p.  25-91. GansC.PoughF.H., Eds, Academic Press, London.

HueyR.B.SlatkinM. (1976): Cost and benefits of lizard thermoregulation. Q. Rev. Biol. 51: 363-384.

HueyR.B.TewksburyJ.J. (2009): Can behavior douse the fire of climate warming? Proc. Natl. Acad. Sci. USA 106: 3647-3648.

Janse van RensburgD.A. (2009): Morphological and behavioural correlates of melanism in Cordylid lizards: Conservation implications for melanistic lizards in the Greater Cederberg Biodiversity Corridor. Unpubl. Ph.D. Thesis, Stellenbosch University, South Africa.

KearneyM.ShineR.PorterW.P. (2009): The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc. Natl. Acad. Sci. USA 106: 3835-3840.

KerrG.D.BottemaM.J.BullC.M. (2008): Lizards with rhythm? Multi-day patterns in total daily movement. J. Zool. 275: 79-88.

KohlsdorfT.NavasC.A. (2006): Ecological constraints on the evolutionary association between field and preferred temperatures in Tropidurinae lizards. Evol. Ecol. 20: 549-564.

KrebsC.J. (1999): Ecological Methodology. Addison-Wesley Educational Publishers, California.

LailvauxS.P.AlexanderG.J.WhitingM.J. (2003): Sex-based differences and similarities in locomotor performance, thermal preferences, and escape behaviour in the lizard Platysaurus intermedius wilhelmi. Physiol. Biochem. Zool. 76: 511-521.

LessellsC.M.BoagP.T. (1987): Unrepeatable repeatabilities – a common mistake. Auk 104: 116-121.

LichtP.DawsonW.R.ShoemakerV.H.MainA.R. (1966): Observations on the thermal relations of western Australian lizards. Copeia 1966: 97-110.

LittellR.C.MillinkenG.A.StroupW.W.WolfingerR.D. (1996): SAS Systems for Mixed Models. SAS Institute, North Carolina.

LovegroveB.G. (2009): Modification and miniaturization of Thermochron iButtons for surgical implantation into small animals. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 179: 451-458.

MadisonW.P.MadisonD.R. (2010): Mesquite: a modular system for evolutionary analysis. Version 2.73

MartinT.L.HueyR.B. (2008): Why “suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am. Nat. 171: 102-118.

McConnachieS.AlexanderG.J.WhitingM.J. (2009): Selected body temperature and thermoregulatory behavior in the sit-and-wait foraging lizard Pseudocordylus melanotus melanotus. Herpetol. Monogr. 23: 108-122.

MidfordP.E.GarlandT.MaddisonW.P. (2009): PDAP: PDTREE package for Mesquite. Version 1.15.

MoutonP. leF.N. (2011): Aggregation behaviour in lizards in the arid western regions of South Africa. Afr. J. Herpetol. 61: 155-170.

MoutonP. leF.N.FlemmingA.F.KangaE.M. (1999): Grouping behaviour, tail-biting behaviour and sexual dimorphism in the armadillo lizard (Cordylus cataphractus) from South Africa. J. Zool. 249: 1-10.

MoutonP. leF.N.FourieD.FlemmingA.F. (2000): Oxygen consumption in two cordylid lizards, Cordylus cataphractus and Cordylus polyzonus. Amphibia-Reptilia 21: 502-507.

MoutonP. leF.N.GeertsemaH.VisagieL. (2000): Foraging mode of a group-living lizard, Cordylus cataphractus (Cordylidae). Afr. Zool. 35: 1-7.

MucinaL.RutherfordM.C. (2006): The Vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria.

PattersonJ.W.DaviesP.M.C. (1978): Preferred body temperature: Seasonal and sexual differences in the lizard Lacerta vivipara. J. Therm. Biol. 3: 39-41.

RetiefD.J. (2000): Geographical variation in group size, body size and number of epidermal glands in the group-living lizard, Cordylus cataphractus (Cordylidae). Unpubl. Honours Thesis, Department of Zoology, Stellenbosch University, South Africa.

RobertK.A.ThompsonM.B. (2003): Reconstructing Thermochron iButtons to reduce size and weight as a new technique in the study of small animal thermal biology. Herp. Rev. 34: 130-132.

SagonasK.ValakosE.D.PafilisP. (2013): The impact of insularity on the thermoregulation of a Mediterranean lizard. J. Therm. Biol. 38: 480-486.

SeebacherF. (2005): A review of thermoregulation and physiological performance in reptiles: what is the role of phenotypic flexibility? J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 175: 453-461.

ShuttleworthC. (2006): Ecological relationships between the armadillo lizard, Cordylus cataphractus, and the southern harvester termite Microhodotermes viator. M.Sc. Thesis, Stellenbosch University, South Africa.

ShuttleworthC.MoutonP. leF.N.van NiekerkA. (2013): Climate and the evolution of group-living behaviour in the armadillo lizard (Ouroborus cataphractus). Afr. Zool. 48: 367-373.

SinervoB.Mendez-de-la-CruzF.MilesD.B.HeulinB. (2010): Erosion of lizard diversity by climate change and altered thermal niches. Science 328: 894-899.

SkinnerD.C. (1991): Effect of intraperitoneal melatonin injections on thermoregulation in the transvaal girdled lizard, Cordylus vittifer. J. Therm. Biol. 16: 179-184.

SokalR.R.RohlfF.J. (1981): Biometry. W.H. Freeman and Co, San Francisco.

StanleyE.L.BauerA.M.JackmanT.R.BranchW.R.MoutonP. leF.N. (2011): Between a rock and a hard polytomy: Rapid radiation in the rupicolous girdled lizards (Squamata: Cordylidae). Mol. Phyl. Evol. 58: 53-70.

StevensonR.D.PetersonC.R.TsujiJ.S. (1985): The thermal dependence of locomotion, tongue flicking, digestion, and oxygen consumption in the wandering garter snake. Physiol. Zool. 58: 46-57.

TruterJ.C. (2011): Aspects of the thermal ecology of the group-living lizard, Cordylus cataphractus: A spatial and temporal analysis. Unpubl M.Sc. Thesis, Stellenbosch University, South Africa.

Van DammeR.BauwensD.CastillaA.M.VerheyenR.F. (1989): Altitudinal variation of the thermal biology and running performance in the lizard Podarcis-tiliguerta. Oecologia 80: 516-524.

VisagieL. (2001): Grouping behaviour in the armadillo girdled lizard, Cordylus cataphractus. Unpubl. M.Sc. Thesis, Stellenbosch University, South Africa.

VisagieL.MoutonP. leF.N.BauwensD. (2005): Experimental analysis of grouping behaviour in cordylid lizards. Herpetol. J. 15: 91-96.

WheelerP.E. (1986): Thermal acclimation of metabolism and preferred body temperature in lizards. J. Therm. Biol. 11: 161-166.

WillsC.A.BeaupreS.J. (2000): An application of randomization for detecting evidence of thermoregulation in timber rattlesnakes (Crotalus horridus) from northwest Arkansas. Physiol. Biochem. Zool. 73: 325-334.

YangJ.SunY.Y.AnH.JiX. (2008): Northern grass lizards (Takydromus septentrionalis) from different populations do not differ in thermal preference and thermal tolerance when acclimated under identical thermal conditions. J. Comp. Physiol. B 178: 343-349.


  • An adult male O. cataphractus from the Matjiesriver inland population fitted with a modified iButton temperature logger. This figure is published in colour in the online version.

    View in gallery
  • The mean (±SE) preferred temperatures among cordylids (Wheeler, 1986; Skinner, 1991; Clusella-Trullas et al., 2007; McConnachie, Alexander and Whiting, 2009; Janse van Rensburg, 2009). Significances are indicated: means with the same letters were found to not differ significantly from each other through Tukey-Kramer post hoc tests.

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 11 11 6
Full Text Views 7 7 7
PDF Downloads 1 1 1
EPUB Downloads 0 0 0