Sexual dimorphism and geographic variation in the morphology of a small southern African tortoise Psammobates oculifer

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

We studied morphological traits of Psammobates oculifer over its range to evaluate patterns in sexual size dimorphism (SSD) and geographic variation. Females were larger than males for 40 of the 44 characters measured and the growth trajectories of female parameters, scaled to body size (ANCOVA and MANCOVA on carapace length), most often followed juvenile patterns. For males, either the slopes or elevations of morphometric parameters were lower than in females. These divergent growth trajectories resulted in shape differences with female shells being higher and wider than the shells of males. Males matured at a smaller age and size, and had wider hind feet and larger shell openings relative to females; the latter being due to a shorter and narrower plastron, a shorter bridge length, and a bigger anal gap and cranial space. These male characteristics possibly enhance mobility for mate searching and combat, as well as courtship and mating behaviour. Small sample sizes for females in two of the three regions restricted geographic evaluations to males, for which shell shape, front foot width and hind leg length of the eastern group differed from the others. We interpreted these variations as the consequence of differences in the substratum and vegetation openness over the range of the species.

Sexual dimorphism and geographic variation in the morphology of a small southern African tortoise Psammobates oculifer

in Amphibia-Reptilia

Sections

References

AnderssonM. (1994): Sexual Selection. Princeton University PressPrinceton, New Jersey.

(2002): Atlas of Namibia Project. Directorate of Environmental Affairs Ministry of Environment and Tourism: http://209.88.21.36/Atlas/Atlas_web.htm (accessed 12 July 2014).

BerryJ.F.ShineR. (1980): Sexual size dimorphism and sexual selection in turtles (Order Testudines). Oecologia 44: 185-191.

BlanckenhornW.U. (2005): Behavioral causes and consequences of sexual size dimorphism. Ethology 111: 977-1016.

BonnetX.LagardeF.HenenB.T.CorbinJ.NagyK.A.NaulleauG.BalhoulK.ChastelO.LegrandA.CambagR. (2001): Sexual dimorphism in steppe tortoises (Testudo horsfieldii): influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc. 72: 357-372.

BonnetX.DelmasV.El-MoudenH.SlimaniT.SterijovskiB.KuchlingG. (2010): Is sexual body shape dimorphism consistent in aquatic and terrestrial chelonians? Zoology 113: 213-220.

BoycottR.C.BourquinO. (2000): The Southern African Tortoise Book. HiltonSouth Africa.

BranchB. (2008): Tortoises Terrapins & Turtles of Africa. StruikCape Town.

CeballosC.AdamsD.IversonJ.ValenzuelaN. (2013): Phylogenetic patterns of sexual size dimorphism in turtles and their implications for Rensch’s rule. Evol. Biol. 40: 194-208.

CeballosC.P.IversonJ.B. (2014): Patterns of sexual size dimorphism in Chelonia: revisiting Kinosternidae. Biol. J. Linn. Soc. 111: 806-809.

Cloudsley-ThompsonJ.L. (1999): The Diversity of Amphibians and Reptiles: An Introduction. Springer-VerlagBerlin.

DarwinC. (1871): The Descent of Man and Selection in Relation to Sex. MurrayLondon.

FairbairnD.J.BlanckenhornW.U.SzékelyT. (2007): Sex Size & Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford University PressUSA.

FAO (1991): Contribution to the vegetation classification of Botswana. Soil mapping and advisory services project. AG:DP/BOT/85/011. Field document #34 Ministry of Finance and Development Planning. Govt. Printer Gaborone.

FritzU.Bininda-EmondsO.R.P. (2007): When genes meet nomenclature: Tortoise phylogeny and the shifting generic concepts of Testudo and Geochelone. Zoology (Jena) 110: 298-307.

GibbonsJ.W.LovichJ.E. (1990): Sexual dimorphism in turtles with emphasis on the slider turtle (Trachemys scripta). Herpetol. Monogr. 4: 1-29.

GolubovićA.AndjelkovićM.ArsovskiD.VujovićA.IkovićV.DjordjevićS.TomovićL. (2013): Skills or strength – how tortoises cope with dense vegetation? Acta Ethol. 7: 141-147.

GouldS.J.LewontinR.C. (1979): The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Biol. Sci. Ser. B 205: 581-598.

HenenB.T. (1997): Seasonal and annual energy budgets of female desert tortoises (Gopherus agassizii). Ecology 78: 283-296.

HofmeyrM.D.HenenB.T.LoehrV.J.T. (2005): Overcoming environmental and morphological constraints: egg size and pelvic kinesis in the smallest tortoise, Homopus signatus. Can. J. Zool. 83: 1343-1352.

HofmeyrM.D.BoycottR.C.BaardE.H.W. (2014): Family: Testudinidae. In: Atlas and Red List of the Reptiles of South Africa Lesotho and Swaziland p.  70-85. BatesM.F.BranchW.R.BauerA.M.BurgerM.MaraisJ.AlexanderG.J.de VilliersM.S. Eds South African Biodiversity InstitutePretoria.

HopkinsK.P.TolleyK.A. (2011): Morphological variation in the Cape Dwarf Chameleon (Bradypodion pumilum) as a consequence of spatially explicit habitat structure differences. Biol. J. Linn. Soc. 102: 878-888.

IversonJ.B. (1985): Geographic variation in sexual dimorphism in the mud turtle Kinosternon hirtipes. Copeia 1985: 388-393.

JanzenF.J. (1993): An experimental analysis of natural selection on body size of hatchling turtles. Ecology 74: 332-341.

JanzenF.J.TuckerJ.K.PaukstisG.L. (2000): An experimental analysis of an early life history stage: selection on size of hatchling turtles. Ecology 81: 2290-2304.

KeswickT. (2012): Ecology and morphology of the Kalahari tent tortoise Psammobates oculifer in a semi-arid environment. Ph.D. Thesis University of the Western Cape Belville South Africa.

KeswickT.HofmeyrM.D. (2013): Population ecology of Psammobates oculifer in a semi-arid environment. Afr. J. Herpetol. 62: 63-77.

KeswickT.HofmeyrM.D. (2014): Refuge characteristics and preferences of Psammobates oculifer in semi-arid Savanna. Amphibia-Reptilia 35: 41-51.

KohlsdorfT.GarlandT.Jr.NavasC.A. (2001): Limb and tail lengths in relation to substrate usage in Tropidurus lizards. J. Morphol. 248: 151-164.

LeM.RaxworthyC.J.McCordW.P.MertzL. (2006): A molecular phylogeny of tortoises (Testudines: Testudinidae) based on mitochondrial and nuclear genes. Mol. Phylogenet. Evol. 40: 517-531.

LoehrV.J.T.HenenB.T.HofmeyrM.D. (2004): Reproduction of the smallest tortoise, the Namaqualand speckled padloper, Homopus signatus signatus. Herpetologica 60: 444-454.

LoehrV.J.T.HenenB.T.HofmeyrM.D. (2006): Shell characteristics & sexual dimorphism in the Namaqualand speckled padloper, Homopus signatus signatus. Afr. J. Herpetol. 55: 1-11.

LoehrV.J.T.HofmeyrM.D.HenenB.T. (2007): Annual variation in the body condition of a small, arid-zone tortoise, Homopus signatus signatus. J. Arid Environ. 71: 337-349.

LovichJ.E.ErnstC.H.McBreenJ.F. (1990): Growth, maturity, and sexual dimorphism in the wood turtle, Clemmys insculpta. Can. J. Zool. 68: 672-677.

LovichJ.E.GibbonsJ.W. (1992): A review of techniques for quantifying sexual size dimorphism. Growth Develop. Aging 56: 269-281.

LovichJ.E.ErnstC.H.ZappalortiR.T.HermanD.W. (1998): Geographic variation in growth and sexual size dimorphism of bog turtles (Clemmys muhlenbergii). Am. Midl. Nat. 139: 69-78.

LovichJ.E.ZnariM.BaamraneM.A.A.NaimiM.MostalihA. (2010): Biphasic geographic variation in sexual size dimorphism of turtle (Mauremys leprosa) populations along an environmental gradient in Morocco. Chelonian Conserv. Biol. 9: 45-53.

MacaleD.VenchiA.ScaliciM. (2011): Shell shape and size variation in the Egyptian tortoise Testudo kleinmanni (Testudinidae, Testudines). Folia Zool. 60: 167-175.

MannG.K.H.O’RiainM.J.HofmeyrM.D. (2006): Shaping up to fight: sexual selection influences body shape and morphology in the fighting tortoise, Chersina angulata. J. Zool. (Lond.) 269: 373-379.

PiankaE.R. (1969): Sympatry of desert lizards (Ctenotus) in Western Australia. Ecology 50: 1012-1030.

PritchardC.H. (1993): Carapacial pankinesis in the Malayan softshell turtle, Dogania subplana. Chelonian Conserv. Biol. 1: 31-36.

RallM. (1990): Psammobates oculifer, serrated tortoise: egg production. J. Herpetol. Assoc. Afr. 37: 45-52.

RutherfordM.C.MucinaL.LotterM.C.BredenkampG.J.SmitJ.H.L.Scott-ShawC.R.HoareD.B.GoodmanP.S.BezuidenhoutH.ScottL.EllisF.PowrieL.W.SiebertF.MostertT.H.HenningB.J.VentnerC.E.CampK.G.T.SiebertS.J.MatthewsW.S.BurrowsJ.E.DobsonL.van RooyenN.SchmidtE.WinterP.J.D.du PreezP.J.WardR.A.WilliamsonS.HurterP.J.H. (2006): Savanna biome. In: The Vegetation of South Africa Lesotho and Swaziland p.  440-529. MucinaL.RutherfordM.C. Eds South African National Biodiversity InstitutePretoria.

RyanK.M.LindemanP.V. (2007): Reproductive allometry in the common map turtle, Graptemys geographica. Am. Midl. Nat. 158: 49-59.

SacchiR.Pellitteri-RosaD.MarchesiM.GaleottiP.FasolaM. (2013): A comparison among sexual signals in courtship of European tortoises. J. Herpetol. 47: 215-221.

SchulzeR.E. (1997): Climate. In: The Vegetation of Southern Africa p.  21-42. CowlingR.M.RichardsonD.M.PierceS.M. Eds Cambridge University PressCambridge.

ShineR. (1988): The evolution of large body size in females: a critique of Darwin’s “Fecundity advantage” model. Am. Nat. 131: 124-131.

SkinnerJ.D.ChimimbaC.T. (2005): The Mammals of the Southern African Subregion. Cambridge University PressCambridge.

StearnsS.C. (1992): The Evolution of Life Histories. Oxford University Press Inc.New York.

StephensP.R.WiensJ.J. (2009): Evolution of sexual size dimorphisms in emydid turtles: ecological dimorphism, Rensch’s rule, and sympatric divergence. Evolution 63: 910-925.

TabachnickB.G.FidellL.S. (2007): Using Multivariate Statistics5th Edition. Pearson Education, Inc./Allyn and BaconBoston.

ThomasD.S.G.ShawP.A. (1991): The Kalahari Environment. Cambridge University PressCambridge.

UllerT.OlssonM. (2010): Offspring size and timing of hatching determine survival and reproductive output in a lizard. Oecologia 162: 663-671.

WalkerF.M.TaylorA.C.SunnucksP. (2007): Does soil type drive social organization in southern hairy-nosed wombats? Mol. Ecol. 16: 199-208.

WillemsenR.E.HaileyA. (2003): Sexual dimorphism in European tortoises. J. Zool. (Lond.) 260: 353-365.

ZarJ.H. (2001): Biostatistical Analysis4th Edition. Prentice HallUpper Saddle River, New Jersey.

ZerbeG.O.ArcherP.G.BancheroN.LechnerA.J. (1982): On comparing regression lines in unequal slopes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 242: 178-180.

Figures

  • View in gallery

    Locality points for Psammobates oculifer samples overlaid on the distribution outline of the species in South Africa, Botswana and Namibia (grey line; Boycott and Bourquin, 2000). The samples were divided into three geographic regions according to vegetation and substrate differences (Thomas and Shaw, 1991; Rutherford et al., 2006) over the range of the species.

  • View in gallery

    Regressions of (A) shell height middle (SHM), (B) bridge length (BL), and (C) distal supracaudal scute width (SD) on straight carapace length (SCL) for Psammobates oculifer cohorts. Slopes differed among cohorts for SHM (f = j > m) and BL (f > m; f = j; m = j), whereas elevations differed among cohorts for SD (m > f = j).

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 32 32 12
Full Text Views 81 81 47
PDF Downloads 5 5 2
EPUB Downloads 0 0 0