Composition and variation of the skin microbiota in sympatric species of European newts (Salamandridae)

in Amphibia-Reptilia

The mucous skin of amphibians provides a habitat for microorganisms which may interact with their hosts and thereby affect their condition and health. Cultivation-independent analyses of the bacterial communities based on the detection of PCR-amplified bacterial 16S rRNA genes provides a direct approach to characterize their diversity. In the present pilot study we utilized this approach in combination with a high-throughput DNA sequencing technology (454 pyrosequencing), to characterize the bacterial community structure of the skin of three newt species (Lissotriton vulgaris, Ichthyosaura alpestris, Triturus cristatus), collected near Braunschweig, Germany. 16S rDNA sequences were obtained from 19 unique samples. On average, 6113 amplicon sequences were obtained per sample and these could phylogenetically be assigned to a total of 1615 different operational taxonomic units (OTUs). Altogether, most samples were rather similar in their dominant bacterial taxa. Most represented were Betaproteobacteria (46%; mostly Janthinobacterium), Gammaproteobacteria (28%; mostly Pseudomonas), Flavobacteria (phylum Bacteroidetes: 19%, mostly Flavobacterium), and Sphingobacteria (Bacteroidetes: 5%, mostly Pedobacter). We found no significant differences between the three newt species, or between hemi-nested vs. non-nested PCR, but a strong difference among sampling dates (15 and 17 April 2013) which might be explained by the ongoing transition of the newts from their terrestrial to aquatic phase which coincided with this period, or by differences between sexes as these were unevenly sampled on the two dates. 16S rRNA gene sequences retrieved in this study in several cases were identical or very similar to those previously found on the skin of North American salamanders.

  • BeckerM.H.HarrisR.N. (2010): Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLOS One 5: e10957.

  • BletzM.C.LoudonA.H.BeckerM.H.BellS.C.WoodhamsD.C.MinbioleK.P.HarrisR.N. (2013): Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol. Lett. 16: 807-820.

    • Rechercher Google Scholar
    • Export Citation
  • CrampR.L.McPheeR.K.MeyerE.A.OhmerW.E.FranklinC.E. (2014): First line of defence: the role of sloughing in the regulation of cutaneous microbes in frogs. Conserv. Physiol. 2: cou012.

    • Rechercher Google Scholar
    • Export Citation
  • EzenwaV.O.GerardoN.M.InouyeD.W.MedinaM.XavierJ.B. (2012): Animal behavior and the microbiome. Science 338: 198-199.

  • FindleyK.OhJ.YangJ.ConlanS.DemingC.MeyerJ.A.SchoenfeldD.NomicosE.ParkM.KongH.H.SegreJ.A. (2013): Topographic diversity of fungal and bacterial communities in human skin. Nature 498: 367-370.

    • Rechercher Google Scholar
    • Export Citation
  • FisherM.C.HenkD.A.BriggsC.J.BrownsteinJ.S.MadoffL.C.MccrawS.L.GurrS.J. (2012): Emerging fungal threats to animal, plant and ecosystem health. Nature 484: 186-194.

    • Rechercher Google Scholar
    • Export Citation
  • HanifinC.T. (2010): The chemical and evolutionary ecology of tetrodotoxin (TTX) toxicity in terrestrial vertebrates. Mar. Drugs 8: 577-593.

  • HarrisR.N.JamesT.Y.LauerA.SimonM.A.PatelA. (2006): Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. Ecohealth 3: 53-56.

    • Rechercher Google Scholar
    • Export Citation
  • HarrisR.N.BruckerR.M.WalkeJ.B.BeckerM.H.SchwantesC.R.FlahertyD.C.LamB.A.WoodhamsD.C.BriggsC.J.VredenburgV.T.MinbioleK.P. (2009a): Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3: 818-824.

    • Rechercher Google Scholar
    • Export Citation
  • HarrisR.N.LauerA.SimonM.A.BanningJ.L.AlfordR.A. (2009b): Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Dis. Aquat. Organ. 83: 11-16.

    • Rechercher Google Scholar
    • Export Citation
  • KuenemanJ.G.Wegener ParfreyL.WoodhamsD.C.ArcherH.M.KnightR.McKenzieV.J. (2013): The amphibian skin-associated microbiome across species, space and life history stages. Mol. Ecol. 23: 1238-1250.

    • Rechercher Google Scholar
    • Export Citation
  • LauberC.L.ZhouN.GordonJ.I.KnightR.FiererN. (2010): Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiology Letters 307: 80-86.

    • Rechercher Google Scholar
    • Export Citation
  • LauerA.SimonM.A.BanningJ.L.AndreE.DuncanK.HarrisR.N. (2007): Common cutaneous bacteria from the eastern red-backed salamander can inhibit pathogenic fungi. Copeia 3: 630-640.

    • Rechercher Google Scholar
    • Export Citation
  • LauerA.SimonM.A.BanningJ.L.LamB.A.HarrisR.N. (2008): Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. ISME J. 2: 145-157.

    • Rechercher Google Scholar
    • Export Citation
  • LoudonA.H.WoodhamsD.C.ParfreyL.W.ArcherH.M.KnightR.McKenzieV.J.HarrisR.N. (2014): Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J. 8: 830-840.

    • Rechercher Google Scholar
    • Export Citation
  • LozuponeC.KnightR. (2005): UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71: 8228-8235.

  • MacfoyC.DanosusD.SanditR.JonesT.H.GarraffoH.M.SpandeT.F.DalyJ.W. (2005): Alkaloids of anuran skin: antimicrobial function? Zeitschrift für Naturforschung C-Journal of Biosciences 60: 932-937.

    • Rechercher Google Scholar
    • Export Citation
  • MartelA.Spitzen-van der SluijsA.BlooiM.BertW.DucatelleR.FisherM.C.WoeltjesA.BosmanW.ChiersK.BossuytF.PasmansF. (2013): Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc. Natl. Acad. Sci. USA 110: 15325-15329.

    • Rechercher Google Scholar
    • Export Citation
  • McKenzieV.J.BowersR.M.FiererN.KnightR.LauberC.L. (2012): Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J. 6: 588-596.

    • Rechercher Google Scholar
    • Export Citation
  • MeyerE.A.CrampR.L.BernalM.H.FranklinC.E. (2012): Changes in cutaneous microbial abundance with sloughing: possible implications for infection and disease in amphibians. Dis. Aquat. Organ. 101: 235-242.

    • Rechercher Google Scholar
    • Export Citation
  • PerrottaI.SperoneE.BernabòI.TripepiS.BrunelliE. (2012): The shift from aquatic to terrestrial phenotype in Lissotriton italicus: larval and adult remodelling of the skin. Zoology 115: 170-178.

    • Rechercher Google Scholar
    • Export Citation
  • PriceM.N.DehalP.S.ArkinA.P. (2010): FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5: e9490.

  • Rollins-SmithL.A.WoodhamsD.C.ReinertL.K.VredenburgV.T.BriggsC.J.NielsenP.F.ConlonJ.M. (2006): Antimicrobial peptide defenses of the mountain yellowlegged frog (Rana muscosa). Dev. Comp. Immunol. 30: 831-842.

    • Rechercher Google Scholar
    • Export Citation
  • SchlossP.D.WestcottS.L.RyabinT.HallJ.R.HartmannM.HollisterE.B.LesniewskiR.A.OakleyB.B.ParksD.H.RobinsonC.J.SahlJ.W.StresB.ThallingerG.G.Van HornD.J.WeberC.F. (2009): Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.

    • Rechercher Google Scholar
    • Export Citation
  • SteinfartzS.VicarioS.ArntzenJ.W.CacconeA. (2007): A Bayesian approach on molecules and behaviour: reconsidering evolutionary patterns in Triturus newts (Amphibia: Salamandridae). J. Exp. Zool. B: Mol. Dev. Evol. 308B: 139-162.

    • Rechercher Google Scholar
    • Export Citation
  • VencesM.SanchezE.HauswaldtJ.S.EikelmannD.RodríguezA.CarranzaS.DonaireD.GeharaM.HelferV.LöttersS.WernerP.SchulzS.SteinfartzS. (2014): Nuclear and mitochondrial multilocus phylogeny and survey of alkaloid content in true salamanders of the genus Salamandra (Salamandridae). Mol. Phylogenet. Evol. 73: 208-216.

    • Rechercher Google Scholar
    • Export Citation
  • WoodhamsD.C.BrandtH.BaumgartnerS.KielgastJ.KüpferE.ToblerU.DavisL.R.SchmidtB.R.BelC.HodelS.KnightR.McKenzieV. (2014): Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLOS One 9: e96375.

    • Rechercher Google Scholar
    • Export Citation
  • WoodhamsD.C.VredenburgV.T.SimonM.BillheimerD.ShakhtourB.ShyrY.BriggsC.J.Rollins-SmithL.A.HarrisR.N. (2007): Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biol. Conserv. 138: 390-398.

    • Rechercher Google Scholar
    • Export Citation
  • WoodhamsD.C.VoylesJ.LipsK.R.CareyC.Rollins-SmithL.A. (2005): Predicted disease susceptibility in a Panamanian amphibian assemblage based on skin peptide defenses. J. Wildl. Dis. 42: 207-218.

    • Rechercher Google Scholar
    • Export Citation
  • Yotsu-YamashitaM.MebsD.KwetA.SchneiderM. (2007): Tetrodotoxin and its analogue 6-epitetrodotoxin in newts (Triturus spp.; Urodela, Salamandridae) from southern Germany. Toxicon 50: 306-309.

    • Rechercher Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 162 138 6
Full Text Views 224 214 1
PDF Downloads 13 10 2