Use of removal sampling to estimate abundance of larval salamanders (Salamandra salamandra) in streams

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

In an era of ongoing biodiversity loss, there is a need for reliable methods that can be used to estimate population size and trends. Removal sampling can be used to estimate the abundance of a single population or of multiple spatially distinct populations of animals. Because multiple removal passes are made during a single visit to a population, it may be very efficient in terms of logistics. Here, we use removal sampling and hierarchical models to estimate the abundance of salamander (Salamandra salamandra) larvae in 15 first- and second-order streams. Detection was positively affected by sampling day, suggesting that observers improved their ability to detect salamander larvae. Abundance was positively affected by the number of pools in the streams. Overall, the removal sampling method performed well despite small sample size. Removal sampling may be a useful method for monitoring amphibians.

Use of removal sampling to estimate abundance of larval salamanders (Salamandra salamandra) in streams

in Amphibia-Reptilia

References

BaileyL.L.SimonsT.R.PollockK.H. (2004): Comparing population size estimators for plethodontid salamanders. J. Herp. 38: 370-380.

BaumgartnerN.WaringerA.WaringerJ. (1999): Hydraulic microdistribution patterns of larval fire salamanders (Salamandra salamandra salamandra) in the Weidlingbach near Vienna, Austria. Freshw. Biol. 41: 31-41.

BorchersD.L.BucklandS.T.ZucchiniW. (2002): Estimating Animal Abundance: Closed Populations. SpringerUSA.

BruceR.C. (1995): The use of temporary removal sampling in a study of population dynamics of the salamander Desmognathus monticola. Aust. J. Ecol. 20: 403-412.

BurnhamK.P.AndersonD.R. (2002): Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach2nd Edition. SpringerNew York.

ButchartS.H.M. (2010): Global biodiversity: indicators of recent declines. Science 328: 1164-1168.

CollinsJ.P. (2010): Amphibian decline and extinction: what we know and what we need to learn. Dis. Aquat. Org. 92: 93-99.

CruzM.J.RebeloR.CrespoE.G. (2006): Effects of an introduced crayfish, Procambarus clarkii, on the distributions of south-west Iberian amphibians in their breeding habitats. Ecography 29: 329-338.

DorazioR.M.JelksH.L.JordanF. (2005): Improving removal-based estimates of abundance by sampling a population of spatially distinct subpopulations. Biometrics 61: 1093-1101.

FiskeI.J.ChandlerR.B. (2011): unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43: 1-23.

Guillera-ArroitaG. (2011): Impact of sampling with replacement in occupancy studies with spatial replication. Methods Ecol. Evol. 2: 401-406.

HayekL.-A.C. (1994): Removal sampling. In: Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians p.  201-205. HeyerW.R.DonnellyM.A.McDiarmidR.W.HayerL.-A.C.FosterM.S. Eds Smithsonian Institution PressWashington.

HoulahanJ.E.FindlayC.S.SchmidtB.R.MeyerA.H.KuzminS.L. (2000): Quantitative evidence for global amphibian population declines. Nature 404: 752-755.

HoulahanJ.E.FindlayC.S.MeyerA.H.KuzminS.L.SchmidtB.R. (2001): Global amphibian population declines: reply. Nature 412: 500.

HydeE.J.SimonsT.R. (2001): Sampling plethodontid salamanders: sources of variability. J. Wildl. Manag. 65: 624-632.

JosephL.N.ElkinC.MartinT.G.PossinghamH.P. (2009): Modeling abundance using N-mixture models: the importance of considering ecological mechanisms. Ecol. Appl. 19: 631-642.

JungR.E.DroegeS.SauerJ.R.LandyR.B. (2000): Evaluation of terrestrial and streamside salamander monitoring techniques at Shenandoah National Park. Environ. Monitor. Assess. 63: 65-79.

KendallW.L.PeterjohnB.G.SauerJ.R. (1996): First-time observer effects in the North American Breeding Bird Survey. Auk 113: 823-829.

KendallW.L.WhiteG.C. (2009): A cautionary note on substituting spatial subunits for repeated temporal sampling in studies of site occupancy. J. Appl. Ecol. 46: 1182-1188.

KéryM. (2008): Estimating abundance from bird counts: binomial mixture models uncover complex covariate relationships. Auk 125: 336-345.

KéryM.DorazioR.M.SoldaatL.M.van StrienA.ZuiderwijkA.RoyleJ.A. (2009): Trend estimation in populations with imperfect detection. J. Appl. Ecol. 46: 1163-1172.

KéryM.RoyleJ.A.SchmidH. (2005): Modeling avian abundance from replicated counts using binomial mixture models. Ecol. Appl. 15: 1450-1461.

KéryM.SchmidtB.R. (2008): Imperfect detection and its consequences for monitoring for conservation. Comm. Ecol. 9: 207-216.

KoppM.BaurB. (2000): Intra- and inter-litter variation in life-history traits in a population of fire salamanders (Salamandra salamandra terrestris). J. Zool. 250: 231-236.

MacKenzieD.I.NicholsJ.D.LachmanG.B.DroegeS.RoyleJ.A.LangtimmC.A. (2002): Estimating site occupancy rates when detection probabilities are less than one. Ecology 83: 2248-2255.

ManentiR.FicetolaG.F.De BernardiF. (2009): Water, stream morphology and landscape: complex habitat determinants for the fire salamander Salamandra salamandra. Amphibia-Reptilia 30: 7-15.

MartelA.Spitzen-van der SluijsA.BlooiM.BertW.DucatelleR.FisherM.C.WoeltjesA.BosmanW.ChiersK.BossuytF.PasmansF. (2013): Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc. Nat. Acad. Sci. USA 110: 15325-15329.

MartelA.BlooiM.AdriaensenC.Van RooijP.BeukemaW.FisherM.C.FarrerR.A.SchmidtB.R.ToblerU.GokaK.LipsK.R.MuletzC.ZamudioK.BoschJ.LöttersS.WombwellE.GarnerT.W.J.CunninghamA.A.Spitzen-van der SluijsA.SalvidioS.DucatelleR.NishikawaK.NguyenT.T.KolbyJ.E.Van BoxclaerI.BossuytF.PasmansF. (2014): Recent introduction of a chytrid fungus endangers Western Palaearctic salamanders. Science 346: 630-631.

MazerolleM.J. (2015): AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.0-2. http://CRAN.R-project.org/package=AICcmodavg.

MazerolleM.J.BaileyL.L.KendallW.L.RoyleJ.A.ConverseS.J.NicholsJ.D. (2007): Making great leaps forward: accounting for detectability in herpetological field studies. J. Herp. 41: 672-689.

McDonaldE.BaxterP.W.J.FullerR.A.MartinT.G.GameE.T.MontambaultJ.PossinghamH.P. (2010): Monitoring does not always count. Trends Ecol. Evol. 25: 547-550.

NicholsJ.D.WilliamsB.K. (2006): Monitoring for conservation. Trends Ecol. Evol. 21: 668-673.

PetersenR.C. (1992): The RCE – a riparian, channel, and environmental inventory for small streams in the agricultural landscape. Freshw. Biol. 27: 295-306.

R Development Core Team (2012): R: a Language and Environment for Statistical Computing. R Foundation for Statistical ComputingVienna, Austria. ISBN 3-900051-07-0 URL http://www.R-project.org/.

RoyleJ.A. (2004): Generalized estimators of avian abundance from count survey data. Anim. Biodiv. Conserv. 27 (1): 375-386.

RoyleJ.A.DorazioR.M. (2006): Hierarchical models of animal abundance and occurrence. J. Agric. Biol. Env. Stat. 11: 249-263.

RoyleJ.A.DorazioR.M. (2008): Hierarchical Modeling and Inference in Ecology: the Analysis of Data from Populations Metapopulations and Communities. Academic PressSan Diego.

SalvidioS. (2007): Population dynamics and regulation in the cave salamander Speleomantes strinatii. Naturwissenschaften 94: 396-400.

SparreboomM. (2014): Salamanders of the Old World. KNNV PublishingZeist.

Spitzen-van der SluijsA.SpikmansF.BosmanW.de ZeeuwM.van der MeijT.GoverseE.KikM.PasmansF.MartelA. (2013): Rapid enigmatic decline drives the fire salamander (Salamandra salamandra) to the edge of extinction in the Netherlands. Amphibia-Reptilia 34: 233-239.

StuartS.N.ChansonJ.S.CoxN.A.YoungB.E.RodriguesA.S.FischmanD.L.WallerR.W. (2004): Status and trends of amphibian declines and extinctions worldwide. Science 306: 1783-1786.

TanadiniL.G.SchmidtB.R. (2011): Population size influences amphibian detection probability: implications for biodiversity monitoring programs. PLoS ONE 6: e28244. DOI:10.1371/journal.pone.0028244.

TanadiniM.SchmidtB.R.MeierP.PelletJ.PerrinN. (2012): Maintenance of biodiversity in vineyard-dominated landscapes: a case study on larval salamanders. Anim. Conserv. 15: 136-141.

ThiesmeierB.SchuhmacherH. (1990): Causes of larval drift of the fire salamander, Salamandra salamandra terrestris, and its effects on population dynamics. Oecologia 82: 259-263.

WernerP.LöttersS.SchmidtB.R. (2014): Analysis of habitat determinants in contact zones of parapatric European salamanders. J. Zool. 292: 31-38.

WhiteG.C.AndersonD.R.BurnhamK.P.OtisD.L. (1982): Capture-Recapture and Removal Methods for Sampling Closed Populations. LA-8787-NERP. Los Alamos National LaboratoryLos Alamos, USA.

YoccozN.G.NicholsJ.D.BoulinierT. (2001): Monitoring of biological diversity in space and time. Trends Ecol. Evol. 16: 446-453.

Figures

  • View in gallery

    Relationships between sampling day and detection probability and abundance and the number of pools based on the best model in table 1. Abundance is estimated for a 75 m long section of stream. Symbols are model-averaged means and standard error. The values for sampling day and the number of pools, respectively, are the observed values. Some streams have the same value of the predictor. Therefore, the number of points in the plot is smaller than the number of streams.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 25 25 14
Full Text Views 13 13 13
PDF Downloads 3 3 3
EPUB Downloads 0 0 0