Evolution and role of the follicular epidermal gland system in non-ophidian squamates

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Many lizard and amphisbaenian lineages possess follicular glands in the dermis of the inner thighs and/or the area anterior to the cloaca. These tubular glands produce a holocrine secretion that finds its way to the external world through pore-bearing scales (femoral and/or preanal pores). Secretions are composed of proteins and many lipophilic compounds that may function as chemosignals in lizard and amphisbaenian communication. In recent years, we have begun to develop an understanding of the adaptive significance of these secretions, and they are currently thought to play an important role in a variety of processes in these animals. While it appears that epidermal gland secretions function in intra- and interspecific recognition and territoriality, research has focused largely on their role in mate assessment. Despite these recent studies, our knowledge on the true role of the chemicals found in epidermal secretions remains poorly studied, and there are many possible avenues for future research on this topic. Here, we review the literature on the follicular epidermal glands of non-ophidian squamates and provide a first taxon-wide overview of their distribution.

Evolution and role of the follicular epidermal gland system in non-ophidian squamates

in Amphibia-Reptilia

Sections

References

AlbertsA.C. (1989a): Ultraviolet visual sensitivity in desert iguanas: implications for pheromone detection. Anim. Behav. 38: 129-137.

AlbertsA.C. (1989b): The evolution of chemical signaling in the desert iguana Dipsosaurus dorsalis. Ph.D. Dissertation University of California USA.

AlbertsA.C. (1990): Chemical properties of femoral gland secretions in the desert iguana, Dipsosaurus dorsalis. J. Chem. Ecol. 16: 13-25.

AlbertsA.C. (1991): Phylogenetic and adaptive variation in lizard femoral gland secretions. Copeia 1: 69-79.

AlbertsA.C. (1992a): Pheromonal self-recognition in desert iguanas. Copeia 1: 229-232.

AlbertsA.C. (1992b): Constraints of the design of chemical communication systems in terrestrial vertebrates. Am. Nat. 139: 62-89.

AlbertsA.C. (1993): Chemical and behavioral studies of femoral gland secretions in iguanid lizards. Brain Behav. Evol. 41: 255-260.

AlbertsA.C.WernerD. (1993): Chemical recognition of unfamiliar conspecifics by green iguanas: functional significance of different signal components. An. Behav. 46: 197-199.

AlbertsA.C.PhillipsJ.WernerD. (1993): Sources of intraspecific variability in the protein-composition of lizard femoral gland secretions. Copeia 3: 775-781.

AlbertsA.C.SharpT.R.WernerD.I.WeldonP.J. (1992): Seasonal variation of lipids in femoral gland secretions of male green iguanas (Iguana iguana). J. Chem. Ecol. 18: 703-712.

AnderssonM. (1994): Sexual Selection. Princeton University PressUK.

AntoniazziM.M.JaredC.PellegriniC.M.R.MachanN. (1993): Epidermal glands in Squamata: morphology and histochemistry of the pre-cloacal glands in Amphisbaena alba (Amphisbaenia). Zoomorphology 113: 199-203.

AragónP.LópezP.MartínJ. (2001a): Effects of conspecific chemical cues on settlement and retreat-site selection of male lizards, Lacerta monticola. J. Herpetol. 35: 681-684.

AragónP.LópezP.MartínJ. (2001b): Chemosensory discrimination of familiar and unfamiliar conspecifics by lizards: implications of field spatial relationships between males. Behav. Ecol. Sociobiol. 50: 128-133.

AragónP.LópezP.MartínJ. (2001c): Discrimination of femoral gland secretions from familiar and unfamiliar conspecifics by male Iberian rock-lizards, Lacerta monticola. J. Herpetol. 2: 346-350.

AragónP.LópezP.MartínJ. (2003): Differential avoidance responses to chemical cues from familiar and unfamiliar conspecifics by male Iberian rock-lizards (Lacerta monticola). J. Herpetol. 37: 583-585.

AragónP.LópezP.MartínJ. (2008): Increased predation risk modifies lizard scent-mark chemicals. J. Exp. Zool. A Ecol. Genet. Physiol. 309: 427-433.

AragónP.MassotM.GaspariniJ.ClobertJ. (2006): Socially acquired information from chemical cues in the common lizard, Lacerta vivipara. An. Behav. 72: 965-974.

ArnoldE.N.OvendenD. (2004): A Field Guide to the Reptiles and Amphibians of Britain and Europe. HarperCollins PublishersUK.

AthavaleH.V.AsmaniM.V.PiloB.ShahR.V. (1977): Histomorphology of epidermal glands of an agamid lizard, Uromastix hardwickii. J. Anim. Morphol. Physiol. 25: 51-55.

BaeckensS.EdwardsS.HuygheK.Van DammeR. (2015): Chemical signalling in lizards: an interspecific comparison of femoral pore number in Lacertidae. The Biol. J. Linn. Soc. 114: 44-57.

BaigK.J.BöhmeW. (1991): Callous scalation in female agamid lizards (Stellio group of Agama) and its functional implications. Bonn. Zool. Beitr. 42: 275-281.

BairdT.A.TimanusD.K. (1998): Social inhibition of territorial behaviour in yearling male collared lizards, Crotaphytus collaris. An. Behav. 56: 898-994.

BarbosaD.FontE.DesfilisE.CarreteroM.A. (2006): Chemically mediated species recognition in closely related Podarcis wall lizards. J. Chem. Ecol. 32: 1587-1598.

BlascoM. (1975): El dimorfismo sexual en cinco especies de la familia Lacertidae (Reptilia). Bol. R. Soc. Esp. Hist. Nat. Secc. Biol. 73: 237-242.

Bro-JørgensenJ. (2009): Dynamics of multiple signaling systems: animal communication in a world of flux. Trends Ecol. Evol. 25: 292-300.

CandolinU. (2000): Male-male competition ensures honest signaling of male parental ability in the three-spined stickleback (Gasterosteus aculeatus). Behav. Ecol. Sociobiol. 49: 57-61.

CarazoP.FontE.DesfilisE. (2007): Chemosensory assessment of rival competitive ability and scent-mark function in a lizard, Podarcis hispanica. An. Behav. 74: 895-902.

CarazoP.FontE.DesfilisE. (2008): Beyond ‘nasty neighbours’ and ‘dear enemies’? Individual recognition by scent marks in a lizard (Podarcis hispanica). An. Behav. 76: 1953-1963.

ChamutS.ValdezV.G.ManesM.E. (2009): Functional morphology of femoral glands in the Tegu lizard, Tupinambis merianae. Zool. Sci. 26: 289-293.

ChauhanN.B. (1986): Histological and structural observations on pre-anal glands of the gekkonid lizard Hemidactylus flaviridis. J. Anat. 144: 93-98.

ChiuK.W.MadersonP.F.A. (1975): The microscopic anatomy of epidermal glands in two species of gekkonine lizards, with some observations on testicular activity. J. Morphol. 147: 23-40.

ClaytonA.CollinsS. (2014): NIH to balance sex in cell and animal studies. Nature 509: 282-283.

ColeC.J. (1966a): Femoral glands in lizards: A review. Herpetologica 22: 119-206.

ColeC.J. (1966b): Femoral glands of the lizard, Crotaphytus collaris. J. Morphol. 118: 119-136.

CooperW.E.Jr. (1994): Chemical discrimination by tongue-flicking in lizards: A review with hypotheses on its origin and its ecological and phylogenetic relationships. J. Chem. Ecol. 20: 439-487.

CooperW.E.Jr. (1998): Evaluation of swab and related tests as a bioassay for assessing responses by squamate reptiles to chemical stimuli. J. Chem. Ecol. 24: 841-866.

CooperW.E.Jr.DepernoC.S.ArnettJ. (1994): Evolution of chemosensory searching. J. Chem. Ecol. 11: 2867-2881.

CooperW.E.Jr.Van WykJ.H.MoutonP. Le F. (1996): Pheromonal detection and sex discrimination of conspecific substrate deposits by the rock-dwelling lizard Cordylus cordylus. Copeia 1996: 839-845.

CooperW.E.Jr.Van WykJ.H.MoutonP. Le F. (1999): Discriminations between pheromones produced by self and other individuals of the same sex in the lizard Cordylus cordylus. J. Chem. Ecol. 25: 197-208.

De GroofG.GwinnerH.SteigerS.KempenaersB.van der LindenA.M. (2010): Neural correlates of behavioural olfactory sensitivity changes seasonally in European starlings. PLoS ONE 5: e14337.

DíazJ.A.Alonso-GómezA.L.DelgadoM.J. (1994): Seasonal variation of gonadal development, sexual steroids, and lipid reserves in a population of the lizard Psammodromus algirus. J. Herpetol. 28: 199-205.

DumérilA.M.C.BibronG. (1834): Erpétologie générale ou histoire naturelle complète des reptilesVols. 1 and 2. Librairie Encyclopédique de RoretFrance.

DussourdD.E.HarvisC.A.MeinwaldJ.EisnerT. (1991): Pheromonal advertisement of a nuptial gift by a male moth (Utetheisa ornatrix). Proc. Natl. Acad. Sci. USA 88: 9224-9227.

EscobarC.A.LabraA.NiemeyerH.M. (2001): Chemical composition of precloacal secretions of Liolaemus lizards. J. Chem. Ecol. 27: 1677-1690.

EscobarC.M.EscobarC.A.LabraA.NiemeyerH.M. (2003): Chemical composition of precloacal secretions of two Liolaemus fabiani populations: are they different? J. Chem. Ecol. 29: 629-638.

FergussonB.BradshawD.CannonJ.R. (1985): Hormonal control of femoral gland secretion in the lizard, Amphibolurus ornatus. Gen. Comp. Endocr. 57: 371-376.

FontE.BarbosaD.SampedroC.CarazoP. (2012): Social behavior, chemical communication, and adult neurogenesis: Studies of scent mark function in Podarcis wall lizards. Gen. Comp. Endocr. 177: 9-17.

FullerR.C.HouleD.TravisJ. (2005): Sensory bias as an explanation for the evolution of mate preferences. Am. Nat. 166: 437-446.

GabirotM.LópezP.MartínJ. (2012a): Interpopulational variation in chemosensory responses to selected steroids from femoral secretions of male lizards, Podarcis hispanica, mirrors population differences in chemical signals. Chemoecology 22: 65-73.

GabirotM.LópezP.MartínJ. (2012b): Differences in chemical sexual signals may promote reproductive isolation and cryptic speciation between Iberian wall lizard populations. Int. J. Evol. Biol. 698520.

GabirotM.LópezP.MartínJ. (2013): Female mate choice based on pheromone content may inhibit reproductive isolation between distinct populations of Iberian wall lizards. Curr. Zool. 59: 210-220.

GabirotM.LópezP.MartínJ.de FraipontM.HeulinB.SinervoB.ClobertJ. (2008): Chemical composition of femoral secretions of oviparous and viviparous types of male common lizards Lacerta vivipara. Biochem. Syst. Ecol. 36: 539-544.

GabirotM.CastillaA.M.LópezP.MartínJ. (2010): Differences in chemical signals may explain species recognition between an island lizard Podarcis atrata, and related mainland lizards P. hispanica. Biochem. Syst. Ecol. 38: 521-528.

GalleyC.LinderH.P. (2007): The phylogeny of the Pentaschistis clade (Danthonioideae, Poaceae) based on chloroplast DNA, and the evolution and loss of complex characters. Evolution 61: 864-884.

GehlbachF.R.WatkinsJ.F.KrollJ.C. (1971): Pheromone trail following studies on typhlopid, leptotyphlopid, and colubrid snakes. Behaviour 40: 282-294.

GeniezP.Sá-SousaP.GuillaumeC.P.CluchierA.CrochetP.A. (2014): Systematics of the Podarcis hispanicus complex (Sauria, Lacertidae) III: Valid nomina of the western and central Iberian forms. Zootaxa 3794: 1-51.

GerlachJ.CanningK.L. (1996): A new species of the western Indian Ocean gecko Ailuronyx (Reptilia; Gekkonidae). Herpetol. J. 6: 37-42.

GlinskyT.H.KrekorianC.O.N. (1985): Individual recognition in free-living adult male desert iguanas, Dipsosaurus dorsalis. J. Herpetol. 19: 541-544.

GrafenA. (1990): Biological signals as handicaps. J. Theor. Biol. 144: 517-546.

GrismerL.L. (2002): Amphibians and Reptiles of Baja California Including Its Pacific Islands and the Islands in the Sea of Cortés (Organisms and Environments). University of California PressUSA.

GugliemettiC.PraetJ.RangarajanJ.R.VreysR.de VochtN.MaesF.VerhoyeM.PonsaertP.van der LindenA.M. (2014): Multimodal imaging of subventricular zone neural stem/progenitor cells in the cuprizone mouse model reveals increased neurogenic potential for the olfactory bulb pathway, but no contribution to remyelination of the corpus callosum. Neuroimage 86: 99-110.

HeathcoteR.J.P.BellE.d’EttorreP.WhileG.M.UllerT. (2014): The scent of sun worship: basking experience alters scent mark composition in male lizards. Behav. Ecol. Sociobiol. 68: 861-870.

HewsD.K.BenardM.F. (2001): Negative association between conspicuous visual display and chemosensory behavior in two phrynosomatid lizards. Ethol. 107: 839-850.

HewsD.K.KnappR.MooreM.C. (1994): Early exposure to androgens affects adult expression of alternative male types in tree lizards. Horm. Behav. 28: 96-115.

HillG.E. (1991): Plumage coloration is a sexually selected indicator of male quality. Nature 350: 337-339.

HughesN.K.KelleyJ.L.BanksP.B. (2012): Dangerous liaisons: the predation risks of receiving social signals. Ecol. Lett. 15: 1326-1339.

HumphriesR.E.RobertsonD.H.L.BeynonR.J.HurstJ.L. (1999): Unravelling the chemical basis of competitive scent marking in house mice. Anim. Behav. 58: 1177-1190.

HurstJ.L.PayneC.E.NevisonC.M.MarieA.D.HumphriesR.E.RobertsonD.H.L.CavaggioniA.BeynonR.J. (2001): Individual recognition in mice mediated by major urinary proteins. Nature 414: 631-634.

ImparatoB.A.AntoniazziM.M.RodriguezM.T.JaredC. (2007): Morphology of the femoral glands in the lizard Ameiva ameiva (Teiidae) and their possible role in semiochemical dispersion. J. Morphol. 268: 636-648.

IraetaP.MonasterioC.SalvadorA.DíazJ.A. (2011): Sexual dimorphism and interpopulation differences in lizard hind limb length: locomotor performance or chemical signaling? Biol. J. Linn. Soc. 104: 318-329.

JanssenswillenS.VandeberghW.TreerD.WillaertB.MaexM.Van BocxlaerI.BossuytF. (2015): Origin and diversification of a salamander sex pheromone system. Mol. Biol. Evol. 32: 472-480.

JohanssonB.G.JonesT.M. (2007): The role of chemical communication in mate choice. Biol. Rev. 82: 265-289.

KelsoE.C.MartinsE.P. (2008): Effects of two courtship display components on female reproductive behavior and physiology in the sagebrush lizard. An. Behav. 75: 639-646.

KhannoonE.R. (2012): Secretions of pre-anal glands of house-dwelling geckos (family: Gekkonidae) contain monoglycerides and 1,3-alkanediol. A comparative chemical ecology study. Biochem. Syst. Ecol. 44: 341-346.

KhannoonE.R.El-GendyA.HardegeJ.D. (2011): Scent marking pheromones in lizards: cholesterol and long chain alcohols elicit avoidance and aggression in male Acanthodactylus boskianus (Squamata: Lacertidae). Chemoecology 21: 14-149.

KhannoonE.R.BreithauptT.El-GendyA.HardegeJ.D. (2010): Sexual differences in behavioral response to femoral gland pheromones of Acanthodactylus boskianus. Herpetol. J. 20: 225-229.

KhannoonE.R.DollahonN.R.BauerA.M. (2013): Comparative study of the pheromone-manufacturing femoral glands in two sympatric species of lacertid lizards (Acanthodactylus). Zool. Sci. 30: 110-117.

KhannoonE.R.FlachsbarthB.El-GendyA.MazikK.HardegeJ.D.SchulzS. (2011): New compounds, sexual differences, and age-related variations in the femoral gland secretions of the lacertid lizard Acanthodactylus boskianus. Biochem. Syst. Ecol. 39: 95-101.

KhannoonE.R.LuntD.H.SchulzS.HardegeJ.D. (2013): Divergence of scent pheromones in allopatric populations of Acanthodactylus boskianus (Squamata: Lacertidae). Zoolog. Sci. 30: 380-385.

KlingenbergC.P. (2003): A developmental perspective on developmental instability: theory, models, and mechanisms. In: Developmental Instability: Causes and Consequences p.  14-34. PolakM. Ed. Oxford University PressUK.

KlugeA.G. (1967): Higher taxonomic categories of gekkonid lizards and their evolution. Bull. Am. Mus. Nat. Hist. 135: 1-60.

KopenaR.LópezP.MartínJ. (2009): Lipophilic compounds from the femoral gland secretios of male Hungarian green lizards, Lacerta viridis. Z. Naturforsch. 64c: 434-440.

KopenaR.LópezP.MartínJ. (2014): Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: an experimental test. Behav. Ecol. Sociobiol. 68: 571-581.

KopenaR.MartínJ.LópezP.HerczegG. (2011): Vitamin E supplementation increases the attractiveness of males’ scent for female European green lizards. PLoS One 6: e19410.

LabraA. (2011): Chemical stimuli and species recognition in Liolaemus lizards. J. Zool. 285: 215-221.

LazićM.M.KaliontzopoulouA.CarreteroM.A.Crnobrnja-IsailovićJ. (2013): Lizards from urban areas are more asymmetric: using fluctuating asymmetry to evaluate environmental disturbance. PLoS ONE 8: e84190.

Le GalliardJ.F.FerrièreR.ClobertJ. (2005): Effect of patch occupancy on immigration in the common lizard. J. An. Ecol. 74: 241-249.

LensL.Van DongenS.KarkS.MatthysenE. (2002): Fluctuating asymmetry as an mindicator of fitness: can we bridge the gap between studies? Biol. Rev. 77: 27-38.

LinnaeusC. (1785): Systema naturae per regna tria naturae secundum classes ordines genera species cum characteribus differentiis synonymis locis. Tomus 1. Editio decima reformata. Holmiae: Impensis Direct. Laurentii Salvii Sweden.

LópezP.MartínJ. (2002): Locomotor capacity and dominance in male lizards Lacerta monticola: a tradeoff between survival and reproductive success? Biol. J. Linn. Soc. 77: 201-209.

LópezP.MartínJ. (2005a): Female Iberian wall lizards prefer male scents that signal a better cell-mediated immune response. Biol. Lett. 1: 404-406.

LópezP.MartínJ. (2005b): Intersexual differences in chemical composition of precloacal gland secretions of the amphisbaenian Blanus cinereus. J. Chem. Ecol. 31: 2913-2921.

LópezP.MartínJ. (2005c): Age related differences in lipophilic compounds found in femoral gland secretions of male spiny-footed lizards, Acanthodactylus erythrurus. Z. Naturforsch. 60c: 915-920.

LópezP.MartínJ. (2005d): Chemical compounds from femoral gland secretions of male Iberian rock lizards, Lacerta monticola cyreni. Z. Naturforsch. 60c: 632-636.

LópezP.MartínJ. (2006): Lipids in the femoral gland secretions of male Schreiber’s green lizards, Lacerta schreiberi. Z. Naturforsch. 61c: 763-768.

LópezP.MartínJ. (2009): Lipids in femoral gland secretions of male lizards, Psammodromus hispanicus. Biochem. Syst. Ecol. 37: 304-307.

LópezP.MartínJ. (2012): Chemosensory exploration of male scent by female rock lizards result from multiple chemical signals of males. Chem. Senses 37: 47-54.

LópezP.AmoL.MartínJ. (2006): Reliable signaling by chemical cues of male traits and health state in male lizards. J. Chem. Ecol. 32: 473-488.

LópezP.AragónP.MartínJ. (2003): Responses of female lizards, Lacerta monticola, to males’ chemical cues reflect their mating preference for older males. Behav. Ecol. Sociobiol. 1: 73-79.

LópezP.GabirotM.MartínJ. (2009): Immune activation affects chemical sexual ornaments of male Iberian wall lizards. Naturwissenschaften 96: 65-69.

LópezP.MoreiraP.L.MartínJ. (2009): Chemical polymorphism and chemosensory recognition between Iberolacerta monticola lizard color morphs. Chem. Senses 34: 723-731.

LópezP.MunozA.MartínJ. (2002): Symmetry, male dominance, and female mate preferences in the Iberian rock-lizard, Lacerta monticola. Behav. Ecol. Sociobiol. 4: 342-347.

LouwS.BurgerB.V.Le RouxM.Van WykJ.H. (2007): Lizard epidermal gland secretions I: Chemical characterization of the femoral gland secretion of the sungazer, Cordylus giganteus. J. Chem. Ecol. 33: 1806-1818.

LouwS.BurgerB.V.Le RouxM.Van WykJ.H. (2011): Lizard epidermal gland secretions II: Chemical characterization of the generation gland secretion of the sungazer, Cordylus giganteus. J. Nat. Prod. 74: 1364-1369.

LoveridgeA. (1947): Revision of the African lizards of the family Gekkondiae. Bull. Mus. Comp. Zool. 98: 1-469.

Macías-GarcíaC.RamirezE. (2005): Evidence that sensory traps can evolve into honest signals. Nature 434: 501-505.

MaddisonW.P.MaddisonD.R. (2011): Mesquite: A modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org.

MadersonP.F.A. (1967): The histology of the Escutcheon scales of Gonatodes (Gekkonidae) with a comment on the squamate sloughing cycle. Copeia 4: 743-752.

MadersonP.F.A. (1968): The epidermal glands of Lygodactylus (Gekkonidae, Lacertilia). Brevoria 288: 1-35.

MadersonP.F.A. (1972): The structure and evolution of holocrine epidermal glands in sphaerodactyline and eublepharine gekkonid lizards. Copeia 3: 559-571.

MadersonP.F.A.ChiuK.W. (1970): Epidermal glands in gekkonid lizards: Evolution and phylogeny. Herpetologica 26: 233-238.

MagnhagenC. (1991): Predation risk as a cost of reproduction. Trends Ecol. Evol. 6: 183-185.

MartínJ.LópezP. (2000): Chemoreception, symmetry, and mate choice in lizards. Proc. R. Soc. B Biol. Sci. 267: 1265-1269.

MartínJ.LópezP. (2001): Hindlimb asymmetry reduces escape performance in the lizard Psammodromus algirus. Physiol. Biochem. Zool. 74: 619-624.

MartínJ.LópezP. (2006a): Age-related variation in lipophilic chemical compounds from femoral gland secretions of male lizards Psammodromus algirus. Biochem. Syst. Ecol. 34: 691-697.

MartínJ.LópezP. (2006b): Vitamin D supplementation increases the attractiveness of males’ scent for female Iberian rock-lizards. Proc. R. Soc. B Biol. Sci. 273: 2619-2624.

MartínJ.LópezP. (2006c): Links between male quality, male chemical signals, and female mate choice in Iberian rock lizards. Funct. Ecol. 20: 1087-1096.

MartínJ.LópezP. (2006d): Interpopulational differences in chemical composition and chemosensory recognition of femoral gland secretions of male lizards Podarcis hispanica: implications for sexual isolation in a species complex. Chemoecology 16: 31-38.

MartínJ.LópezP. (2010a): Condition-dependent pheromone signaling by male rock lizards: more oily scents are more attractive. Chem. Senses 35: 253-262.

MartínJ.LópezP. (2010b): Multimodal sexual signals in male ocellated lizards Lacerta lepida: vitamin E in scent and green coloration may signal male quality in different sensory channels. Naturwissenschaften 97: 545-553.

MartínJ.LópezP. (2011): Pheromones and reproduction in reptiles. In: Hormones and Reproduction in Vertebrates p.  141-167. NorrisD.O.LopezK.H. Eds Academic PressUSA.

MartínJ.LópezP. (2012): Supplementation of male pheromone on rock substrates attracts female rock lizards to the territories of males: a field experiment. PLoS ONE 7: e30108.

MartínJ.LópezP. (2014): Pheromones and chemical communication in lizards. In: The Reproductive Biology and Phylogeny of Lizards and Tuatara p.  43-77. RheubertJ.L.SiegenD.S.TrauthS.E. Eds CRC PressUSA.

MartínJ.LópezP. (2015): Condition-dependent chemosignals in reproductive behavior of lizards. Horm. Behav. 68: 14-24.

MartínJ.AmoL.LópezP. (2008): Parasites and health affect multiple sexual signals in male common wall lizards, Podarcis muralis. Naturwissenschaften 95: 293-300.

MartínJ.OrtegaJ.LópezP. (2013a): Chemical compounds from the preanal gland secretions of the male tree agama (Acanthocercus atricollis) (fam. Agamidae). Z. Naturforsch. 68c: 253-258.

MartínJ.OrtegaJ.LópezP. (2013b): Lipophilic compounds in femoral secretions of male collared lizards, Crotaphytus bicinctores (Iguania, Crotaphytidae). Biochem. Syst. Ecol. 47: 5-10.

MartínJ.MoreiraP.L.LópezP. (2007): Status-signaling chemical badges in male Iberian rock-lizards. Funct. Ecol. 21: 568-576.

MartínJ.CivantosE.AmoL.LópezP. (2007): Chemical ornaments of male lizard Psammodromus algirus may reveal their parasite load and health state to females. Behav. Ecol. Sociobiol. 62: 173-179.

MartínJ.ChamutS.ManesM.E.LópezP. (2011): Chemical constituents of the femoral gland secretions of male Tegu lizards (Tupinambis merianae) (family Teiidae). Z. Naturforsch. 66c: 434-440.

MartínJ.CastillaA.LópezP.JaidahM.MohtarR. (2012): Lipophilic compounds in femoral gland secretions of spiny-tailed lizard dhub Uromastyx aegyptia microlepis (Reptilia Agamidae) from the Qatar desert. Qatar Foundation Annual Research Forum EEP53.

MartínJ.LópezP.GarridoM.Pérez-CembranosP.Pérez-MelladoV. (2013): Inter-island variation in femoral secretions of the Balearic lizard, Podarcis lilfordi (Lacertidae). Biochem. Syst. Ecol. 50: 121-128.

MartinsE.P.OrdT.J.SlavenJ.WrightJ.L.HousworthE.A. (2006): Individual, sexual, seasonal, and temporal variation in the amount of sagebrush lizard scent marks. J. Chem. Ecol. 32: 881-893.

MasonR.T. (1992): Biology of the ReptiliaVol. 18 Physiology E. University of Chicago PressUSA.

MasonR.T.ParkerM.T. (2010): Social behavior and pheromonal communication in reptiles. J. Comp. Physiol. 196: 729-749.

MasonR.T.FalesH.M.JonesT.H.PannellL.K.ChinnJ.W.CrewsD. (1989): Sex pheromones in snakes. Science 245: 290-293.

MasonR.T.JonesT.H.FalesH.M.PannellL.K.CrewsD. (1990): Characterization, synthesis, and behavioral response to the sex attractiveness pheromones of the red-sided garter snake, Thamnophis sirtalis parietalis. J. Chem. Ecol. 16: 27-36.

MooersA.Ø.SchluterD. (1999): Reconstructing ancestor states with maximum likelihood: Support for one- and two-rate models. Syst. Biol. 48: 623-633.

MoreiraP.L.LópezP.MartínJ. (2006): Femoral secretions and copulatory plugs convey chemical information about male identity and dominance status in Iberian rock-lizards (Lacerta monticola). Behav. Ecol. Sociobiol. 2: 166-174.

MoutonP. Le F.N.Van WykJ.H. (1993): Sexual dimorphism in cordylid lizards: a case study of the Drakensberg crag lizard, Pseudocordylus melanotus. Can. J. Zool. 71: 1715-1723.

MoutonP. Le F.N.Van RensburgD.A.J.Van WykJ.H. (2010): Epidermal glands in cordylid lizards, with special reference to generation glands. Zool. J. Linn. Soc. 158: 312-324.

MoutonP. Le F.N.FlemmingA.F.BroeckhovenC. (2014): Generation gland morphology in cordylid lizards: an evolutionary perspective. J. Morphol. 275: 456-464.

Müller-SchwarzeD. (2006): Chemical Signals in Vertebrates. Cambridge University PressUK.

OlssonM.MadsenT. (1998): Sexual selection and sperm competition in reptiles. In: Sperm Competition and Sexual Selection p.  503-577. BirkheadT.R.MøllerA.P. Eds Academic PressUK.

OlssonM.MadsenT.NordbyJ.WapstraE.UjvariB.WittsellH. (2003): Histocompatibility complex and mate choice in sand lizards. Proc. R. Soc. B Biol. Sci. 270: S254-S256.

OsadaK.YamazakiK.CurranM.BardJ.SmithB.P.C.BeauchampG.K. (2003): The scent of age. Proc. R. Soc. B Biol. Sci. 270: 929-933.

Ossip-KleinA.G.FuentesJ.A.HewsD.K.MartinsE.P. (2013): Information content is more important than sensory system or physical distance in guiding the long-term evolutionary relationship between signaling modalities in Sceloporus lizards. Behav. Ecol. Sociobiol. 67: 1513-1522.

PagelM. (1994): Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. B Biol. Sci. 255: 37-45.

PagelM. (1999): The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48: 612-622.

PartanS.R.MarlerP. (2005): Issues in the classification of multimodal communication signals. Am. Nat. 166: 231-245.

Pellitteri-RosaD.MartínJ.LópezP.BellatiA.SacchiR.FasolaM.GaleottiP. (2014): Chemical polymorphism in male femoral gland secretions matches polymorphic coloration in common wall lizards (Podarcis muralis). Chemoecology 24: 67-78.

PetersR.A.OrdT.J. (2003): Display response of the Jacky dragon, Amphibolurus muricatus (Lacertilia: Agamidae), to intruders: A semi-Markovian process. Austral. Ecol. 28: 499-506.

Pincheira-DonosoD.HodgsonD.J.TregenzaT. (2008): Comparative evidence for strong phylogenetic inertia in precloacal signalling glands in a species-rich lizard clade. Evol. Ecol. Res. 10: 11-28.

PyronR.BurbrinkF.WiensJ. (2013): A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13: 93.

SchallJ.J. (1995): Malarial parasites of lizards: diversity and distribution, prevalence patterns, course of infection, gametocyte sex ratio, interspecic interactions, vector biology and virulence. Adv. Parasit. 25: 29-42.

SheldahlL.A.MartinsE.P. (2000): The territorial behavior of the western fence lizard, Sceloporus occidentalis. Herpetologica 56: 469-479.

ToyodaF.YamamotoK.IwataT.HasunumaI.CardinaliM.MosconiG.Polzonetti-MagniA.M.KikuyamaS. (2004): Peptide pheromones in newts. Peptides 25: 1531-1536.

UetzP.HošekJ. The Reptile Database http://www.reptile-database.orgaccessed August 2014-April 2015.

ValdecantosS.MartinezV.LabraA. (2014): Comparative morphology of Liolaemus lizards precloacal glands. Acta Herpetol. 9: 147-158.

Van DongenS. (2006): Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future. J. Evol. Biol. 19: 1727-1743.

Van ValenL. (1962): A study of fluctuating asymmetry. Evol. 16: 125-142.

Van WykJ.H. (1990): Seasonal testicular activity and morphometric variation in the femoral glands of the lizard Cordyluspolyzonus polyzonus (Sauria: Cordylidae). J. Herpetol. 24: 405-409.

Van WykJ.H.MoutonP. Le F.N. (1992): Glandular epidermal structures in cordylid lizards. Amphibia-Reptilia 13: 1-12.

WeldonP.J.FlachsbarthB.SchulzS. (2008): Natural products from the integument of nonavian reptiles. Nat. Prod. Rep. 25: 738-756.

WhitingM.J.WebbJ.K.KoeghJ.S. (2009): Flat lizard female mimics use sexual deception in visual but not in chemical signals. Proc. R. Soc. B Biol. Sci. 276: 1585-1591.

WittenG.J. (1982): Comparative morphology and karyology of the Australian members of the family Agamidae and their phylogenetic implications. Ph.D. Dissertation University of Sydney Australia.

WittenG.J. (1993): Family Agamidae. In: Fauna of AustraliaVol. 2A Amphibia and Reptilia p.  18-19. GasbyC.J.RossG.J.B.BeesleyP.L. Eds Australian Government Publishing ServiceAustralia.

WyattT.D. (2014): Proteins and peptides as pheromone signals and chemical signature. An. Behav. 97: 273-280.

ZahaviA.ZahaviA. (1997): The Handicap Principle: A Missing Piece of Darwin’s Puzzle. Oxford University PressUSA.

ZuckerI.BeeryA.K. (2010): Males still dominate animal studies. Nature 465: 690.

ZukM.KolluruG.R. (1998): Exploitation of sexual signals by predators and parasitoids. Q. Rev. Biol. 73: 415-438.

Figures

  • View in gallery

    Photomicrographs of (a) the ventral region of the thigh of a cordylid lizard, showing the patches of generation glands and a row of epidermal pores, and (b) a cross-section through a protruding multiple-layer type generation gland of Cordylus minor (both pictures obtained from Mouton, Flemming and Broeckhoven, 2014 with permission) (EP, epidermal pore; GG, generation gland; MG, mature generation layer). This figure is published in colour in the online version.

  • View in gallery

    Picture of (a) the cloacal region of a male Lacerta agilis adult, showing epidermal pores with protruding secretion, and (b) a longitudinal section of a follicular epidermal gland of Amphisbaena alba (latter picture obtained from Antoniazzi et al., 1993 with permission) (EP, epidermal pore; GB, glandular body; S, secretion). This figure is published in colour in the online version.

  • View in gallery

    Evolution of epidermal pores in non-ophidian squamates: a family overview. Phylogeny proposed by Pyron, Burbrink and Wiens (2013). Pie charts from the maximum likelihood analyses are shown for ancestors, with the proportion of black representing the likelihood of epidermal pores being present in this ancestor. Pie charts are marked with a minus symbol “–” (upper right side) when optimization is statistically not significant, all other nodes are significant. This figure is published in colour in the online version.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 82 82 17
Full Text Views 177 177 93
PDF Downloads 11 11 2
EPUB Downloads 1 1 0