Beam Brook revisited: a molecular study of a historically introduced non-native amphibian (Triturus carnifex) and its limited introgression into native UK Triturus cristatus populations

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Human mediated introductions of non-native species can pose a major threat to global biodiversity on several accounts i.e. through competition, the introduction of novel pathogens, and genetic pollution. Where hybridization occurs between two closely related species the F1 offspring are usually phenotypically discernible whereas F2 hybrid, backcrossed or admixed individuals become more difficult to separate. At this point the utilization of molecular methods is required in conservation efforts to differentiate and manage populations. This study demonstrated how a possible threat of hybridization from an introduced non-native (T. carnifex) with a protected native newt species (T. cristatus) could be investigated with molecular tools, and examined the current extent of its genetic introgression over an 80 years period. The results confirmed that hybridization had taken place at the site of introduction (and continues to do so), and that historically limited local dispersal of both non-natives and/or hybrids had occurred sometime in the past. However, the data suggests that although dispersal of hybrids into a local satellite site may still be occuring, hybridization with native species appears limited.

Amphibia-Reptilia

Publication of the Societas Europaea Herpetologica

Sections

References

AllendorfF.W.LundquistL.L. (2003): Introduction: population biology, evolution, and control of invasive species. Conserv. Biol. 17: 24-30.

AndersonE.C.ThompsonE.A. (2002): A model-based method for identifying species hybrids using multilocus genetic data. Genet. 160: 1219-1229.

ArntzenJ.W.ThorpeR.S. (1999): Italian crested newts (Triturus carnifex) in the basin of Geneva: distribution and genetic interactions with autochthonous species. Herpetologica 55 (4): 423-433.

ArntzenJ.W.WallisG.P. (1991): Restricted gene flow in a moving hybrid zone of the newts Triturus cristatus and T. marmoratus in western France. Evol. 45 (4): 805-826.

ArntzenJ.W.WallisG.P. (1999): Geographic variation and taxonomy of crested newts (Triturus cristatus superspecies): morphological and mitochondrial DNA data. Contrib. Zool. 68: 181-203.

ArntzenJ.W.Espregueira ThemudoG.WielstraB. (2007): The phylogeny of crested newts (Triturus cristatus superspecies): nuclear and mitochondrial genetic characters suggest a hard polytomy, in line with paleogeography of the centre of origin. Contrib. Zool. 76: 261-278.

ArntzenJ.W.JehleR.BardakciF.BurkeT.WallisG.P. (2009): Asymmetric viability of reciprocal-cross hybrids between crested and marbled newts (Triturus cristatus and T. marmoratus). Evol. 63: 1191-1202.

ArntzenJ.W.BurkeT.JehleR. (2010): Estimating the propagule size of a cryptogenic crested newt population. Anim. Cons. 13: 74-81.

ArntzenJ.W.WielstraB.WallisG.P. (2014): The modality of nine Triturus newt hybrid zones, assessed with nuclear, mitochondrial and morphological data. Biol. J. Linn. Soc. 113: 604-622.

BredeE.G.ThorpeR.S.ArntzenJ.W.LangtonT.E.S. (2000): A morphometric study of a hybrid newt population (Triturus cristatus/T. carnifex): Beam Brook Nurseries, Surrey, U.K. Biol. J. Linn. Soc. 70: 685-695.

BrookfieldJ.F.Y. (1996): A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5: 453-455.

BroquetT.Berset-BraendliL.EmaresiG.FumagalliL. (2007): Buccal swabs allow efficient and reliable microsatellite genotyping in amphibians. Conserv. Genet. 8: 509-511.

BrufordM.W.HanotteO.BrookfieldJ.F.Y.BurkeT. (1998): Multilocus and single-locus DNA fingerprinting. In: Molecular Genetic Analysis of Populations; a Practical Approach, 2nd Edition, p.  287-336. HoelzelA.R., Ed., IRL Press, Oxford, UK.

CallanH.G.SpurwayH. (1951): A study of meiosis in interracial hybrids of the newt Triturus cristatus. J. Genet. 50: 235-249.

ChakrabortyR.De AndradeM.DaigerS.P.BudowleB. (1992): Apparent heterozygote deficiencies observed in DNA typing data, their implications in forensic applications. Annals Hum. Genet. 56: 45-57.

CornuetJ.-M.LuikartG. (1996): Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genet. 144: 2001-2014.

EarlD.A.vonHoldtB.M. (2012): Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet. Resour. 4: 359-361.

EastalS. (1981): The history of introductions of Bufo marinus (Amphibia: Anura): a natural experiment in evolution. Biol. J. Linn. Soc. 16: 93-113.

EvannoG.RegnautS.GoudetJ. (2005): Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620.

FreytagG.E. (1978): Uber Triturus cristatus bei Salzburg (Amphibia: Caudata: Salamandridae). Salamandra 14: 45-46.

GillisN.K.WaltersL.J.FernandesF.C.HoffmanE.A. (2009): Higher genetic diversity in introduced than in native populations of the mussel Mytella charruana: evidence of population admixture at introduction sites. Diversity Distrib. 15: 784-795.

GoudetJ. (1995): FSTAT (V.1.2): a computer program to estimate F-statistics. J. Hered. 86: 485-486.

KolbeJ.J.GlorR.E.SchettinoL.R.LaraA.C.LarsonA.LososJ.B. (2004): Genetic variation increases during biological invasion by a Cuban lizard. Nature 431: 177-181.

KrupaA.P.JehleR.DawsonD.A.GentleL.K.GibbsM.ArntzenJ.W.BurkeT. (2002): Microsatellite loci in the crested newt (Triturus cristatus) and their utility in other newt taxa. Conserv. Genet. 3: 87-89.

LeverC. (1980): Observations at Beam Brook Nurseries. Br. Herpetol. Soc. Bull. 1 (6): 21-23.

LeverC. (2009): The Naturalised Animals of Britain and Ireland. New Holland Publishers Ltd, London, UK.

LockwoodJ.L.CasseyP.BlackburnT. (2005): The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20 (5): 223-228.

MacgregorH.C.SessionsS.K.ArntzenJ.W. (1990): An integrative analysis of phylogenetic relationships among newts of the genus Triturus (family Salamandridae), using comparative biochemistry, cytogenetics and reproductive interactions. J. Evol. Biol. 3: 329-373.

MalacarneG.GiacomaC. (1986): Chemical signals in European newt courtship. Boll. Zool. 53 (1): 79-83.

MaletzkyA.MikulíčekP.FranzenM.GoldschmidA.GruberH.-J.HorákA.KyekM. (2008): Hybridization and introgression between two species of crested newts (Triturus cristatus and T. carnifex) along contact zones in Germany and Austria: morphological and molecular data. Herpetol. J. 18: 1-15.

MalmgrenJ.C.EnghagM. (2008): Female preference for male dorsal crests in great crested newts (Triturus cristatus). Ethol. Ecol. Evol. 20: 71-80.

MeilinkW.R.M.ArntzenJ.W.van DelftJ.J.C.W.WielstraB. (2015): Genetic pollution of a threatened native crested newt species through hybridization with an invasive congener in the Netherlands. Biol. Conserv. 184: 145-153.

MikulíčekP.HorákA.ZavadilV.KautmanJ.PiálekJ. (2012): Hybridization between three crested newt species (Triturus cristatus superspercies) in the Czech Republic and Slovakia: comparison of nuclear markers and mitochondrial DNA. Folia Zool. 61: 202-218.

OosterhoutC.V.HutchinsonW.WillsD.ShipleyP. (2004): MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538.

PidancierN.MiquelC.MiaudC. (2003): Buccal swabs as a non-destructive tissue sampling method for DNA analysis in amphibians. Herpetol. J. 13: 175-178.

PosadaD.CrandallK.A. (1998): Modeltest: testing the model of DNA substitution. Bioinformatics 14 (9): 817-818.

PritchardJ.K.StephensM.DonnellyP. (2000): Inference of population structure using multilocus genotype data. Genet. 155: 945-959.

RiceW.R. (1989): Analysing tables of statistical tests. Evol. 43: 223-225.

RonquistF.HuelsenbeckJ.P. (2003): MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinforma. 19: 1572-1574.

RoussetF. (2008): Genepop’007: a complete reimplementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8: 103-106.

SambrookJ.FritschF.ManiatisT. (1989): Molecular Cloning: a Laboratory Manual, 2nd Edition. ColdSpring Harbour Press, New York, NY.

SchmidtlerJ.F. (1976): Die bemerkenswerten Kammolche (Triturus cristatus) des Berchtesgadener Landes. Salamandra 12: 32-36.

SchneiderS.RoessliD.ExcoffierL. (2000): Arlequin: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva. http://cmpg.unibe.ch/software/arlequin3/.

SchönI.RaepsaetA.GoddeerisB.BauwensD.MergeayJ.VanoverbekeJ.MartensK. (2011): High genetic diversity but limited gene flow in Flemish populations of the crested newt, Triturus cristatus. Belg. J. Zool. 141 (1): 3-13.

SchoorlJ.ZuiderwijkA. (1981): Ecological isolation in Triturus cristatus and Triturus marmoratus (Amphibia: Salamandridae). Amphibia-Reptilia 1: 235-252.

SimberloffD.StirlingP. (1996): Risks of species introduced for biological control. Biol. Conserv. 78: 185-192.

SotiropoulosK.TsaparisD.EleftherakosK.KotoulasG.LegakisA.KasapidisP. (2008): New polymorphic microsatellite loci for the Macedonian crested newt, Triturus macedonicus, and cross-priming testing in four other crested newt species. Mol. Ecol. Resour. 8: 1402-1404.

SteinfartzS.VicarioS.ArntzenJ.W.CacconeA. (2007): A Bayesian approach on molecules and behavior: reconsidering phylogenetic and evolutionary patterns of the Salamandridae with emphasis on Triturus newts. J. Exp. Zool. B: Mol. Dev. Evol. 308B: 139-162.

StumpelA.H. (1992): Successful reproduction of introduced bull frogs Rana catesbeiana in northwestern Europe: a potential threat to indigenous amphibians. Biol. Conserv. 60: 61.

SwoffordD.L. (1991): PAUP Phylogenetic Analysis Using Parsimony, Version 3.1. Computer program distributed by the Illinois Natural History Survey, Champaign, Illinois. http://paup.csit.fsu.edu/.

TreerD.Van BocxlaerI.MatthijsS.Du FourD.JanssenswillenS.WillaertB.BossuytF. (2013): Love is blind: indiscriminate female mating responses to male courtship pheromones in newts (Salamandridae). PLoS ONE 8 (2): e56538. DOI:10.1371/journal.pone.0056538.

VinšálkováT.GvoždikL. (2007): Mismatch between temperature preferences and morphology in F1 hybrid newts (Triturus carnifex × T. dobrogicus). J. Thermal Biol. 32: 433-439.

VukovT.D.SotiropoulosK.WielstraB.DžukićG.KalezićM.L. (2011): The evolution of the adult body form of the crested newt (Triturus cristatus superspecies, Caudata, Salamandridae). J. Zool. Syst. Evol. Res. 49: 324-334.

WatersJ.M.FraserC.I.HewittG.M. (2013): Founder takes all: density-dependent processes structure biodiversity. Trends Ecol. Evol. 28: 78-85.

WielstraB.ArntzenJ.W. (2011): Unraveling the rapid radiation of crested newts (Triturus cristatus superspecies) using complete mitogenomic sequences. BMC Evol. Biol. 11: 162.

WielstraB.LitvinchukS.N.NaumovN.TzankovN.ArntzenJ.W. (2013): A revised taxonomy of crested newts in the Triturus karelinii group (Amphibia: Caudata: Salamandridae), with the description of a new species. Zootaxa 3682: 441-453.

WielstraB.BabikW.ArntzenJ.W. (2015): The crested newt Triturus cristatus recolonized temperate Eurasia from an extra-Mediterranean glacial refugium. Biol. J. Linn. Soc. 114: 574-587.

WolterstorffW. (1923): Ubersicht der unterarten und formen des Triton cristatus Laur. Blätter für aquarien und Terrarienkunde, Stuttgart 34: 120-126.

Figures

  • Site of Triturus carnifex introduction (Beam Brook) and surrounding satellite sites and proportion of T. cristatus (black), T. carnifex (white) and hybrid (grey) genomes at each site (see table S1 in online supplementary materials for site/sampling details). Microsatellite (STRUCTURE) data above site name, mtDNA (haplotype) data below. Inset shows location of UK sites. This figure is published in colour in the online version.

    View in gallery
  • Maximum likelihood tree of mtDNA haplotypes from ‘pure’ Triturus cristatus (Nb: Newborough, UK; Pb: Peterborough, UK)/T. carnifex (SG: San Guisto, Italy) populations, the hybrid populations (Bb: Beam Brook, Sf: Sturtwood Farm, Cph: Capel Post House), and additional Triturus sequences from Genbank (Tcar: T. carnifex, Tmac: T. macedonicus, Tiva: T. ivanbureschi, Tpyg: T. pygmaeus, Tmar: T. marmoratus). Values along branches are % of bootstraps, bold notation are haplotypes (Tri) followed by species/site (T∗∗∗/∗∗) followed by individual if applicable (eg Bb01f). Shaded areas indicate haplotype/species groups: T. cristatus collected this study (top, green), T. carnifex collected this study (middle, blue), T. carnifex from Genbank database (bottom, red). This figure is published in colour in the online version.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 14 14 4
Full Text Views 4 4 4
PDF Downloads 1 1 1
EPUB Downloads 0 0 0