Genetic structure and differentiation of the fire salamander Salamandra salamandra at the northern margin of its range in the Carpathians

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Amphibian populations occurring at the margin of the species range exhibit lower genetic variation due to strong genetic drift and long-term isolation. Limited mobility and site fidelity together with habitat changes may accelerate genetic processes leading to local extinction. Here, we analyze genetic variation of the fire salamander subspecies Salamandra s. salamandra inhabiting the Outer Carpathian region in Poland, at the northern border of its distribution. Nuclear DNA polymorphism based on 10 microsatellite loci of 380 individuals sampled in 11 populations were analysed to measure gene flow between subpopulations and possible long-term isolation. Mitochondrial DNA control region analysis among 17 individuals representing 13 localities was used to detect the origin of populations which colonized Northern Europe after the last glaciation. Overall, pairwise FST’s and AMOVA test of ‘among group’ variation showed little differences in the allele frequencies and relatively high local gene flow. However, Bayesian clustering results revealed subtle structuring between eastern and western part of the studied region. Two extreme marginal populations from the Carpathian Piedmont revealed reduced genetic variation which may be attributed to strong influence of genetic drift. Only one mitochondrial DNA haplotype (type IIb) was found in all individuals and suggest that after the Last Glacial Maximum Salamandra salamandra migrated to the North-Western Europe from the single glacial refugium placed in the Balkan Peninsula.

Genetic structure and differentiation of the fire salamander Salamandra salamandra at the northern margin of its range in the Carpathians

in Amphibia-Reptilia



AllendorfF.W.LuikartG.AitkenS.N. (2013): Conservation and the Genetics of Populations. Wiley-BlackwellUK.

AndersenL.W.FogK.DamgaardC. (2004): Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proc. R. Soc. Lond. B 271: 1293-1302.

ArifI.A.KhanH.A.BakhaliA.H.HomaidanA.A.A.FarhanA.H.A.SadoonM.A.ShobrakM. (2011): DNA marker technology for wildlife conservation. Saudi J. Biol. Sci. 18: 219-225.

Bar-DavidS.SegevO.PelegN.HillN.TempletonA.R.SchultzC.B.BlausteinL. (2007): Long-distance movements by fire salamanders (Salamandra infraimmaculata) and implications for habitat fragmentation. Isr. J. Ecol. Evol. 53: 143-159.

BeebeeT.J.C.RoweG. (1999): Microsatellite analysis of natterjack toad Bufo calamita Laurenti populations: consequences of dispersal from a Pleistocene refugium. Biol. J. Linn. Soc. 69: 367-381.

BeebeeT.J.C. (2005): Conservation genetics of amphibians. Heredity 95: 423-427.

BlankL.SinaiI.Bar-DavidS.PelegN.SegevO.SadehA.KopelmanN.M.TempletonA.R.MeriläJ.BlausteinL. (2012): Genetic population structure of the endangered fire salamander (Salamandra infraimmaculata) at the southernmost extreme of its distribution. Anim. Conserv. 16: 412-421.

ChapuisM.P.EstoupA. (2007): Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24: 621-631.

CornuetJ.M.LuikartG. (1997): Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001-2014.

DempsterA.P.LairdN.M.RubinD.B. (1977): Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39: 1-38.

Di RienzoA.PetersonA.GarzaJ.C.ValdesA.M.SlatkinM.FreimerN.B. (1994): Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. USA 91: 3166-3170.

DyerR.J.NasonJ.D. (2004): Population graphs: the graph theoretic shape of genetic structure. Mol. Ecol. 13: 1713-1727.

EarlD.A.von HoldtB.M. (2012): STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4: 359-361.

EckertC.G.SamisK.E.LougheedS.C. (2008): Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol. Ecol. 17: 1170-1188.

EvannoG.RegnautS.GoudetJ. (2005): Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620.

ExcoffierL.FollM.PetitR.J. (2009): Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40: 481-501.

ExcoffierL.LischerH.L. (2010): Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10: 564-567.

FrankhamR. (2005): Genetics and extinction. Biol. Conserv. 126: 131-140.

FrankhamR. (2010): Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143: 1919-1927.

García-RamosG.KirkpatrickM. (1997): Genetic models of adaptation and gene flow in peripheral populations. Evolution 51: 21-28.

GarnerT.W.J.PearmanP.B.AngeloneS. (2004): Genetic diversity across a vertebrate species’ range: a test of the centralperipheral hypopthesis. Mol. Ecol. 13: 1047-1053.

GłowacińskiZ.RafińskiJ. Eds (2003): Atlas of the Amphibians and Reptiles of Poland. Status-Distribution-Conservation. Biblioteka Monitoringu Środowiska Warszawa-Kraków.

GoudetJ. (2011): FSTAT a Program to Estimate and Test Gene Diversities and Fixation Indices Version 2.9.3.

HallT.A. (1999): BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.

HampeA.PetitR.J. (2005): Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8: 461-467.

HartelT.SchweigerO.ÖllererK.CogălniceanuD.ArntzenJ.W. (2010): Amphibian distribution in a traditionally managed rural landscape of eastern Europe: probing the effect of landscape composition. Biol. Conserv. 143: 1118-1124.

HewittG.M. (1999): Post-glacial recolonization of European biota. Biol. J. Linn. Soc. 68: 87-112.

JehleR.ArntzenJ.W. (2002): Microsatellite markers in amphibian conservation genetics. J. Herpetol. 12: 1-9.

KopelmanN.M.MayzelJ.JakobssonM.RosenbergN.A.MayroseI. (2015): CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Res. DOI:10.1111/1755-0998.12387.

KuzminS.PapenfussT.SparreboomM.UgurtasI.H.AndersonS.BeebeeT.DenoëlM.AndreoneF.AnthonyB.SchmidtB.OgrodowczykA.OgielskaM.BoschJ.TarkhnishviliD.IshchenkoV. (2009): Salamandra salamandra. The IUCN Red List of Threatened Species. Version 2015.1. Downloaded on 29 May 2015.

ManelS.SchwartzM.K.LuikartG.TaberletP. (2003): Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol. 18: 189-197.

NajbarB. (1995): Płazy i gady Polski. Wyższa Szkoła Inżynierska w Zielonej Górze. Zielona Góra.

OgrodowczykA.OgielskaM.KierzkowskiP.MaślakR. (2010): Występowanie salamandry plamistej Salamandra s. salamandra Linnaeus 1758 na Dolnym Śląsku. Przyroda Sudetów 13: 179-192.

OgrodowczykA. (2011): Zasięg występowania zmienność genetyczna i struktura wybranych populacji salamandry plamistej Salamandra s. salamandra (Linnaeus 1758) na Dolnym Śląsku. Praca doktorska. Uniwersytet Wrocławski.

PabijanM.BabikW.RafińskiJ. (2005): Conservation units in north-eastern populations of the Alpine newt (Triturus alpestris). Conserv. Genet. 6: 307-312.

PabijanM.BabikW. (2006): Genetic structure in northeastern populations of the Alpine newt (Triturus alpestris): evidence for post-Pleistocene differentiation. Mol. Ecol. 15: 2397-2407.

PiryS.LuikartG.CornuetJ.M. (1999): BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90: 502-503.

Porras-HurtadoL.RuizY.SantosC.PhillipsCh.CarracedoA.LareuM.V. (2013): An overview of STRUCTURE: applications, parameter settings, and supporting software. Front. Genet. 4: 1-13.

PritchardJ.K.StephensM.DonellyP. (2000): Inference of population structure using multi-locus genotype data. Genetics 155: 945-959.

PrusakB.MitrusS.NajbarB.PacholewskaA.DeasA.SkoniecznaK.GóreckiG.GrzybowskiG.HryniewiczA.WróblewskiR.GrzybowskiT. (2013): Population differentiation of the European pond turtle (Emys orbicularis) in Poland inferred by the analysis of mitochondrial and microsatellite DNA: implications for conservation. Amphibia-Reptilia 34: 451-461.

RiceW.R. (1989): Analyzing tables of statistical tests. Evolution 43: 223-225.

RoussetF. (2008): Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Res. 8: 103-106.

RoussetF. (2014): Genepop 4.3 for Windows/Linux/Mac OS X.

RoweG.BeebeeT.J.C. (2003): Population on the verge of a mutational meltdown? Fitness costs genetic loads for an amphibian in the wild. Evolution 57: 177-181.

SchmidtB.R.SchaubM.SteinfartzS. (2007): Apparent survival of the salamander Salamandra salamandra is low because of high migratory activity. Front. Zool. 4: 19 DOI:10.1186/1742-9994-4-19.

SchmittT. (2007): Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4: 11. DOI:10.1186/1742-9994-4-11.

SchulteU.KüstersD.SteinfartzS. (2007): A PIT tag based analysis of annual movement patterns of adult fire salamanders (Salamandra salamandra) in a middle European habitat. Amphibia-Reptilia 28: 531-536.

SextonJ.P.McIntyreP.J.AngertA.L.RiceK.J. (2009): Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40: 415-436.

SlatkinM. (1987): Gene flow and the geographic structure of natural populations. Science 236: 787-792.

SlatkinM. (1993): Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47: 264-279.

SommerR.S.IndqvistCh.L.PerssonA.BringsøeH.RhodinA.J.SchneeweissN.ŠirokP.BachmannL.FritzU. (2009): Unexpected early extinction of the European pond turtle (Emys orbicularis) in Sweden and climatic impact on its Holocene range. Mol. Ecol. 18: 1252-1262.

SotiropoulosK.EleftherakosK.KalezićM.L.LegakisA.PolymeniR.M. (2008): Genetic structure of the alpine newt, Mesotriton alpestris (Salamandridae, Caudata), in the southern limit of its distribution: implications for conservation. Biochem. System. Ecol. 36: 297-311.

SteinfartzS.VeithM.TautzD. (2000): Mitochondrial sequence analysis of Salamandra taxa suggests old splits of major lineages and postglacial recolonization of central Europe from distinct source populations of Salamandra salamandra. Mol. Ecol. 9: 397-410.

SteinfartzS.KüstersD.TautzD. (2004): Isolation and characterization of polymorphic tetranucleotide microsatellite loci in the fire salamander Salamandra salamandra (Amphibia: Caudata). Mol. Ecol. Notes 4: 626-628.

SteinfartzS.WeitereM.TautzD. (2007): Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest. Mol. Ecol. 16: 4550-4561.

TamuraK.StecherG.PetersonD.FilipskiA.KumarS. (2013): MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.

ThiesmeierB. (2004): Der Feuersalamander. Laurenti-VerlagBielefeld.

Van OosterhoutC.HutchinsonW.F.WillisD.P.ShipleyP. (2004): MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538.

WeitereM.TautzD.NeumannD.SteinfartzS. (2004): Adaptive divergence vs. environmental plasticity: trading local genetic adaptation of metamorphosis in salamanders. Mol. Ecol. 13: 1665-1677.

ZakrzewskiM. (2007): Salamandra plamista. Rozmieszczenie biologia i zagrożenia. Wydawnictwo Naukowe AP Kraków.

ZielińskiP.DudekK.StuglikM.T.LianaM.BabikW. (2014): Single nucleotide polymorphisms reveal genetic structuring of the Carpathian newt and provide evidence of interspecific gene flow in the nuclear genome. PLoS ONE 9 (5): e97431. DOI:10.1371/journal.pone.0097431.


  • View in gallery

    Top: Distribution of Salamandra salamandra according to the International Union for Conservation of Nature (left) and sampling localities in Poland (right). Black points (1-11) represent populations taken for microsatellite study; white points (12-13) represent additional localities included for mitochondrial DNA analysis. Population numbers refer to table 1. Bottom: Genetic structuring for (a) K = 2 and (b) K = 5. This figure is published in colour in the online version.

  • View in gallery

    Nonmetric two-dimensional scaling of the FST matrix for all populations (stress value = 0.0416).

  • View in gallery

    The neighbour joining tree of mitochondrial DNA haplotypes of the fire salamander Salamandra salamandra subspecies belonging to clade C, described and numbered as previously published in Steinfartz, Veith and Tautz (2000), including the Sudetes (described by Ogrodowczyk, 2011) and populations of Polish part of the Carpathians. Numbers at nodes represent the bootstrap values.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 16 16 8
Full Text Views 92 92 65
PDF Downloads 5 5 2
EPUB Downloads 0 0 0