Responses to nitrate pollution, warming and density in common frog tadpoles (Rana temporaria)

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Amphibians face a variety of anthropogenic environmental perturbations that could act alone or in combination to influence population size. We investigated interactive effects of warming conditions, a moderate pulse of nitrogen pollution, and conspecific density on larvae of the common frog, Rana temporaria. The 16-day experiment had a 2 × 2 × 2 factorial design implemented in 80-l outdoor mesocosms. High density and warm temperature both resulted in reduced activity and visibility; tadpoles grew and developed more quickly at low density and high temperature. The high-nitrogen treatment did not influence behavior, growth, or development rate. We attribute this to several realistic features of our study, including a pulsed treatment application and natural denitrification within the mesocosms. There was only a single interaction among the three factors: higher temperature exacerbated density-dependence in growth rate. These results illustrate that climate warming may benefit temperate amphibians, although the benefits may be counteracted by enhanced larval crowding.

Responses to nitrate pollution, warming and density in common frog tadpoles (Rana temporaria)

in Amphibia-Reptilia

Sections

References

ÁlvarezD.NiciezaA.G. (2002): Effects of temperature and food quality on anuran larval growth and metamorphosis. Funct. Ecol. 16: 640-648.

AngillettaM.J.Jr. (2009): Thermal Adaptation. A Theoretical and Empirical Synthesis. Oxford University Press Inc.New York.

BaayenR.H.DavidsonD.J.BatesD.M. (2008): Mixed effects modeling with crossed random effects for subjects and items. J. Mem. Lang. 59: 390-412.

BakerL.F.MudgeJ.F.HoulahanJ.E.ThompsonD.G.KiddK.A. (2014): The direct and indirect effects of a glyphosate-based herbicide and nutrients on Chironomidae (Diptera) emerging from small wetlands. Env. Tox. Chem. 33: 2076-2085.

BakerN.J.BancroftB.A.GarciaT.S. (2013): A meta-analysis of the effects of pesticides and fertilizers on survival and growth of amphibians. Sci. Total Environ. 449: 150-156.

BernardoE.HenzyA.MilinichikM.MorrisonL.RussellT. (2011): Effects of temperature on feeding rate of larval two-lined salamanders (Eurycea bislineata). J. Ecol. Res. 13: 39-43.

BernhardtE.S.HallR.O.Jr.LikensG.E. (2002): Whole-system estimates of nitrification and nitrate uptake in streams of the Hubbard Brook Experimental Forest. Ecosystems 5: 419-430.

BervenK.A. (1990): Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology 71: 1599-1608.

BooneM.D.BridgesC.M. (1999): The effect of the temperature on the potency of carbaryl for survival of tadpoles of the green frog (Rana clamitans). Environ. Toxicol. Chem. 18: 1482-1484.

BooneM.D.SemlitschR.D. (2001): Interactions of an insecticide with larval density and predation in experimental amphibian communities. Conserv. Biol. 15: 228-238.

BooneM.D.SemlitschR.D.LittleE.E.DoyleM.C. (2007): Multiple stressors in amphibian communities: effects of chemical contamination, bullfrogs, and fish. Ecol. Appl. 17: 291-301.

BridgesC.M.SemlitschR.D. (2000): Variation in pesticide tolerance of tadpoles among and within species of Ranidae and patterns of amphibian decline. Conserv. Biol. 14: 1490-1499.

CamargoJ.A.AlonsoA. (2006): Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ. Int. 32: 831-849.

CamargoJ.A.AlonsoA.SalamancaA. (2005): Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere 58: 1255-1267.

CareyC.AlexanderM.A. (2003): Climate change and amphibian declines: is there a link? Divers. Distrib. 9: 111-121.

CastanoB.MielyS.SmithG.R.RettigJ.E. (2010): Interactive effects of food availability and temperature on wood frogs (Rana sylvatica) tadpoles. Herpetol. J. 20: 209-211.

DeNicolaD.M. (1996): Periphyton responses to temperature at different ecological levels. In: Algal Ecology: Freshwater Benthic Ecosystems p.  150-183. StevensonR.J.BothwellM.L.LoweR.L. Eds Academic PressSan Diego, California, USA.

DenöelM.D’HoogheB.FicetolaG.F.BrasseurC.De PuawE.ThoméJ.P.KestemontP. (2012): Using sets of behavioral biomarkers to assess short-term effects of pesticide: a study case with endosulfan on frog tadpoles. Ecotoxicology 21: 1240-1250.

DeutschC.A.TewksburyJ.J.HueyR.B.SheldonK.S.GhalamborC.K.HaakD.C.MartinP.R. (2008): Impacts of climate warming on terrestrial ectotherms across latitude. P. Natl. Acad. Sci. 105: 6668-6672.

DistelC.A.BooneM.D. (2009): Effects of aquatic exposure to the insecticide carbaryl and density on aquatic and terrestrial growth and survival in American toads. Environ. Toxicol. Chem. 28: 1963-1969.

DistelC.A.BooneM.D. (2010): Effects of aquatic exposure to the insecticide carbaryl are species-specific across life-stages and mediated by heterospecific competitors in anurans. Funct. Ecol. 24: 1342-1352.

DuarteH.TejedoM.KatzenbergerM.MarangoniF.BaldoD.BeltránJ.F.MartíD.A.Richter-BoixA.González-VoyerA. (2012): Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities. Global Change Biol. 18: 412-421.

EdgeC.ThompsonD.HaoC.HoulahanJ. (2014): The response of amphibian larvae to exposure to a glyphosate-based herbicide (Roundup WeatherMax) and nutrient enrichment in an ecosystem experiment. Ecotox. Env. Safety 109: 124-132.

Egea-SerranoA.TejedoM. (2014): Contrasting effects of nitrogenous pollution on fitness and swimming performance of Iberian waterfrog, Pelophylax perezi (Seoane, 1885), larvae in mesocosms and field enclosures. Aquat. Toxicol. 146: 144-153.

Egea-SerranoA.TejedoM.TorralvaM. (2009): Populational divergence in the impact of three nitrogenous compounds and their combination on larvae of the frog Pelophylax perezi (Seoane, 1885). Chemosphere 76: 869-877.

Egea-SerranoA.TejedoM.TorralvaM. (2011): Behavioral responses of the Iberian waterfrog, Pelophylax perezi (Seoane, 1885), to three nitrogenous compounds in laboratory conditions. Ecotoxicology 20: 1246-1257.

Egea-SerranoA.RelyeaR.TejedoM.TorralvaM. (2012): Understanding of the impact of chemicals on amphibians. A meta-analytic review. Ecol. Evol. 2: 1382-1397.

Fernández-AláezM.Fernández-AláezC. (2010): Effects of the intense summer desiccation and the autumn filling on the water chemistry in some Mediterranean ponds. Limnetica 29: 59-74.

Fertiliser Manufacturer’s Association Ministry of Agriculture Fisheries and Food Scottish Office of Agriculture and Fisheries Department (1993): The British Survey of Fertiliser Practice: Fertiliser Use on Farm Crops 1992. HMSOLondon, UK.

GalloyV.DenöelM. (2010): Detrimental effects of temperature increase on the fitness of an amphibian (Lissotriton helveticus). Acta Oecologica 36: 179-183.

GhalamborC.K.McKayJ.K.CarrollS.P.ReznickD.N. (2007): Adaptive versus non adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21: 394-407.

GoldmanJ.C.CarpenterE.J. (1974): A kinetic approach to the effect of temperature on algal growth. Limnol. Oceanogr. 19: 756-766.

GosnerK.L. (1960): A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183-190.

GovindirajuluP.P.AnholtB.R. (2006): Interaction between biotic and abiotic factors determines tadpole survival rate under natural conditions. Ecoscience 13: 413-421.

Griffis-KyleK.L.RitchieM.E. (2007): Amphibian survival, growth and development in response to mineral nitrogen exposure and predator cues in the field: an experimental approach. Oecologia 152: 633-642.

HatchA.C.BlausteinA.R. (2003): Combined effects of UV-V radiation and nitrate fertilizer on larval amphibians. Ecol. Appl. 13: 1083-1093.

HoffmanA.A.ParsonsP.A. (1991): Evolutionary Genetics and Environmental Stress. Oxford ScientificOxford.

JohanssonM.RäsänenK.MeriläJ. (2001): Comparison of nitrate tolerance between different populations of the common frog, Rana temporaria. Aquat. Toxicol. 54: 1-14.

KarrakerN.E.GibbsJ.P.VoneshJ.R. (2008): Impact of road deicing salt on the demography of vernal pool-breeding amphibians. Ecol. Appl. 18: 724-734.

KempM.J.DoddsW.K. (2002): The influence of ammonium, nitrate, and dissolved oxgen concentrations on uptake, nitrification and denitrification rates associated with prairie stream substrata. Limnol. Oceanogr. 47: 1380-1393.

LanctotC.RobertsonC.Navarro-MartinL.EdgeC.MelvinS.D.HoulahanJ.TrudeauV.L. (2013): Effects of the glyphosate-based herbicide Roundup WeatherMax on metamorphosis of wood frogs (Lithobates sylvaticus) in natural wetlands. Aquat. Toxicol. 140-141: 48-57.

LaugenA.T.LaurilaA.RasanenK.MerilaJ. (2003): Latitudinal countergradient variation in the common frog (Rana temporaria) development rates: evidence for local adaptation. J. Evol. Biol. 16: 996-1005.

LindgrenB.LaurilaA. (2005): Proximate causes of adaptive growth rates: growth efficiency variation among latitudinal populations of Rana temporaria. J. Evol. Biol. 18: 820-828.

MannR.M.HyneR.V.ChoungC.B.WilsonS.P. (2009): Amphibians and agricultural chemicals: review of the risks in a complex environment. Env. Poll. 157: 2903-2927.

MarcoA.BlausteinA.R. (1999): The effect of nitrite on behavior and metamorphosis in Cascades frogs (Rana cascadae). Environ. Toxicol. Chem. 18: 946-949.

MarcoA.Ortiz-SantaliestraM.E. (2009): Impact of reactive nitrogen on amphibians. In: Amphibian Decline: Diseases Parasites Maladies and PollutionAmphibian Biology Vol. 8 p.  3145-3185. HeatwoleH.WilkinsonJ.W. Eds Surrey Beatty & SonsBaulkham Hills, New South Wales, Australia.

MassalL.R.SnodgrassJ.W.CaseyR.E. (2007): Nitrogen pollution of stormwater ponds: potential for toxic effects on amphibian embryos and larvae. Appl. Herpetol. 4: 19-29.

MeehlG.A.StockerT.F.CollinsW.D.FriedlingsteinP.GayeA.T.GregoryJ.M.KitohA.KnuttiR.MurphyJ.M.NodaA.RaperS.C.B.WattersonI.G.WeaverA.J.ZhaoZ.-C. (2007): Global climate projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change p.  747-845. SolomonS.QinD.ManningM.ChenZ.MarquisM.AverytK.B.TignorM.MillerH.L. Eds Cambridge University PressCambridge, United Kingdom and New York, NY, USA.

MerchánD.OteroN.SolerA.CaupaséJ. (2014): Main sources and processes affecting dissolved sulphates and nitrates in a small irrigated basin (Lerma basin, Zaragoza, Spain): isotopic characterization. Agri. Ecosyst. Environ. 195: 127-138.

MillsN.E.SemlitschR.D. (2004): Competition and predation mediate the indirect effects of an insecticide on southern leopard frogs. Ecol. Appl. 14: 1041-1054.

NewmanR.A. (1998): Ecological constraints on amphibian metamorphosis: interactions of temperature and larval density with responses to changing food level. Oecologia 115: 9-16.

O’ReganS.M.PalenW.J.AndersonS.C. (2014): Climate warming mediates negative impacts of rapid pond drying for three amphibian species. Ecology 95: 845-855.

OrizaolaG.LaurilaA. (2009): Microgeographic variation in temperature-induced plasticity in an isolated amphibian metapopulation. Evol. Ecol. 23: 979-991.

OromiN.SanuyD.VilchesM. (2009): Effects of nitrate and ammonium on larvae of Rana temporaria from the Pyrenees. Bull. Env. Cont. Tox. 82: 534-537.

Ortiz-SantaliestraM.E.MarcoA.FernandezM.J.LizanaM. (2006): Influence of developmental stage on sensitivity to ammonium nitrate of aquatic stages of amphibians. Env. Tox. Chem. 25: 105-111.

Ortiz-SantaliestraM.E.Fernández-BenéitezM.J.LizanaM.MarcoA. (2010): Adaptation to osmotic stress provides protection against ammonium nitrate in Pelophylax perezi embryos. Environ. Pollut. 158: 934-940.

Ortiz-SantaliestraM.E.Fernández-BenéitezM.J.MarcoA. (2012): Density effects on ammonium nitrate toxicity on amphibians. Survival, growth and cannibalism. Aquat. Toxicol. 110-111: 170-176.

PeltzerP.M.LajmanovichR.C.AttademoA.M.BeltzerA.H. (2006): Diversity of anurans across agricultural ponds in Argentina. Biodivers. Conserv. 15: 3499-3513.

SahuquilloM.MiracleM.E.MorataS.M.VicenteE. (2012): Nutrient dynamics in water and sediment of Mediterranean ponds across a wide hydroperiod gradient. Limnologica 42: 282-292.

SanuyD.OromíN.GalofréA. (2008): Effects of temperature on embryonic and larval development and growth in the natterjack toad (Bufo calamita) in a semi-arid zone. Anim. Biod. Cons. 31: 41-46.

SecondiJ.HinotE.DjaloutZ.SouriceS.Jadas-HécartA. (2009): Realistic nitrate concentration alters the expression of sexual traits and olfactory male attractiveness in newts. Funct. Ecol. 23: 800-808.

SmithD.C. (1987): Adult recruitment in chorus frogs: effects of size and date at metamorphosis. Ecology 68: 344-350.

SmithD.C.Van BuskirkJ. (1995): Phenotypic design, plasticity, and ecological performance in two tadpole species. Am. Nat. 145: 211-233.

SmithR.L.BöhlkeJ.K.RepertD.A.HartC.P. (2009): Nitrification and denitrification in a midwestern stream containing high nitrate: in situ assessment using tracers in domed-shape incubation chambers. Biogeochemistry 96: 189-208.

SparlingD.W.LinderG.BishopC.A.KrestS.K. (2010): Ecotoxicology of Amphibians and Reptiles2nd Edition. CRC Press, Taylor & Francis GroupBoca Ratón, FL.

SteinwascherK. (1978): Interference and exploitation competition among tadpoles of Rana utricularia. Ecology 59: 1039-1046.

StoksR.SwillenI.De BlockM. (2012): Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae. J. Anim. Ecol. 81: 1034-1040.

TanC.O. (2002): The roles of hydrology and nutrients in alternative equilibrium of two shallow lakes of Anatolia. Lake Eymir and Lake Mogan: using monitoring and modelling approaches. M.Sc. Thesis Middle East Technical University Ankara Turkey.

TejedoM.RequesR. (1994): Plasticity in metamorphic traits of natterjack tadpoles: the interactive effect of density and pond duration. Oikos 71: 295-304.

ThomasM.K.KremerC.T.KlausmeierC.A.LitchmanE. (2012): A global pattern of thermal adaptation in marine phytoplankton. Science 338: 1085-1088.

Van BuskirkJ. (2005): Local and landscape influence on amphibian occurrence and abundance. Ecology 86: 1936-1947.

Van BuskirkJ.YurewiczK.L. (1998): Effects of predators on prey growth rate: relative contributions of thinning and reduced activity. Oikos 82: 20-28.

WarkentinK.M. (1992): Effects of temperature and illumination on feeding rates of green frog tadpoles (Rana clamitans). Copeia 1992: 725-730.

WexlerS.K.HiscockK.M.DennisP.F. (2012): Microbial and hydrological influences on nitrate isotopic composition in an agricultural lowland catchment. J. Hydrol. 468-469: 85-93.

WilburH.M. (1977a): Interactions of food level and population density in Rana sylvatica. Ecology 58: 206-209.

WilburH.M. (1977b): Density-dependent aspects of growth and metamorphosis in Bufo americanus. Ecology 58: 196-200.

WinklerJ.D.ForteG. (2011): The effects of road salt on larval life history traits and behavior in Rana temporaria. Amphibia-Reptilia 32: 527-532.

Figures

  • View in gallery

    Life history responses of R. temporaria tadpoles after exposure for 16 days to variation in nitrogen concentration, temperature, and density in outdoor mesocosms. Symbols are treatment means ± 1 SE (n=6). Black lines and circles: ambient temperature; gray lines and triangles: warm. Open symbols and dashed lines: low-nitrogen, filled symbols and solid lines: high-nitrogen.

  • View in gallery

    Behavioral responses of R. temporaria tadpoles to variation in nitrogen concentration, temperature, and density. Data are averaged across the two observation occasions because interactions involving date were generally unimportant (table 2). Symbols are means ± 1 SE (n=6). Black lines and circles: ambient temperature; gray lines and triangles: warm. Open symbols and dashed lines: low-nitrogen, filled symbols and solid lines: high-nitrogen.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 14 14 7
Full Text Views 8 8 7
PDF Downloads 2 2 1
EPUB Downloads 0 0 0