Notes on the thermal ecology of Testudo hermanni hermanni in Menorca (Balearic Islands, Spain)

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

We studied the thermal ecology of Testudo hermanni hermanni in Menorca during late spring. We measured body temperatures of adult individuals, together with air and substrate temperatures at points of capture. Sunlight exposure (full sun, filtered sun, or shade) and type of substrate were also recorded. Body temperatures were similar between sexes (mean = 29.95°C) as were air temperatures between gender capture sites (mean = 28.33°C). Conversely, females were found in areas with a higher substrate temperature (31.60°C) than males were (29.15°C). Moreover, the correlation between body and air temperatures was stronger than it was between body and substrate temperatures, as found in other populations of this species. The tortoises were usually found in full sun, and the proportion of animals found in each sunlight category was similar between sexes. Our results contribute to the knowledge of the thermal ecology of the western Hermann’s tortoise.

Notes on the thermal ecology of Testudo hermanni hermanni in Menorca (Balearic Islands, Spain)

in Amphibia-Reptilia

References

AdolphS.C.PorterW.P. (1993): Temperature, activity, and lizard life histories. Am. Nat. 142: 273-295.

AngillettaM.J. (2009): Thermal Adaptation: a Theoretical and Empirical Synthesis. Oxford University PressOxford.

AngillettaM.J.NiewiarowskiP.H.NavasC.A. (2002): The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27: 249-268.

BauwensD.HertzP.E.CastillaA.M. (1996): Thermoregulation in a lacertid lizard: the relative contributions of distinct behavioral mechanisms. Ecology 77: 1818-1830.

BertoleroA.CheylanM.HaileyA.LivoreilB.WillemsenR. (2011): Testudo hermanni (Gmelin 1789) – Hermann’s tortoise. In: Conservation Biology of Freshwater Turtles and Tortoises: a Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research MonographsNo. 5 p.  059.1-059.20. RhodinA.G.J.PritchardP.C.H.van DijkP.P.SaumureR.A.BuhlmannK.A.IversonJ.B.MittermeierR.A. Eds. DOI:10.3854/crm.5.059.hermanni.v1.2011http://www.iucn-tftsg.org/cbftt/. Downloaded on 16 May 2016.

BertoleroA.PretusJ. (2012): Distribució actual de la tortuga mediterrània a Menorca. Revista de Menorca 91: 177-186.

BogertC.M. (1949): Thermoregulation in reptiles, a factor in evolution. Evolution 3: 195-211.

CarreteroM.A.BertoleroA.LlorenteG.A. (1995): Thermal ecology of a population of Testudo hermanni in the Ebro Delta (NE Spain). In: Scientia Herpetologica p.  208-212. LlorenteG.A.MontoriA.SantosX.CarreteroM.A. Eds Societas Europaea HerpetologicaBarcelona, Spain.

CherchiM.A. (1956): Termoregolazione in Testudo hermanni Gmelin. Boll. Mus. Inst. Biol. Univ. Genova 26: 5-46.

CheylanM. (2001): Testudo hermanni Gmelin, 1789 – Griechische Landschildkröte. In: Handbuch der Reptilien und Amphibien Europas p.  179-289. Band 3/IIIA. Schildkröten (Testudines I) (Bataguridae Testudinidae Emydidae). FritzU. Ed. Aula-VerlagWiebelsheim.

CrawleyM.J. (2012): The R Book. WileyChichester, UK.

Fernández-ChacónA.BertoleroA.AmengualA.TavecchiaG.HomarV.OroD. (2011): Spatial heterogeneity in the effects of climate change on the population dynamics of a Mediterranean tortoise. Glob. Change Biol. 17: 3075-3088.

FilippiE.RugieroL.CapulaM.BurkeR.L.LuiselliL. (2010): Population and thermal ecology of Testudo hermanni hermanni in the Tolfa mountains of central Italy. Chelonian Conserv. Bi. 9: 54-60.

FritzU.AuerM.BertoleroA.CheylanM.FattizzoT.HundsdörferA.K.Martín-SampayoM.PretusJ.L.ŠirokýP.WinkM. (2006): A rangewide phylogeography of Hermann’s tortoise, Testudo hermanni (Reptilia: Testudines: Testudinidae) implications for taxonomy. Zool. Scr. 35: 531-543.

HaileyA.CoulsonI.M. (1996): Temperature and the tropical tortoise Kinixys spekii: tests of thermoregulation. J. Zool. 240: 537-549.

HertzP.E.HueyR.B.StevensonR.D. (1993): Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropiate question. Am. Nat. 142: 796-818.

HueyR.B.SlatkinM. (1976): Costs and benefits of lizard thermoregulation. The Q. Rev. Biol. 51: 363-384.

Huot-DaubremontC.GrenotC.BradshawD. (1996): Temperature regulation in the tortoise Testudo hermanni, studied with indwelling probes. Amphibia-Reptilia 17: 91-102.

MazzottiS.PisapiaA.FasolaM. (2002): Activity and home range of Testudo hermanni in Northern Italy. Amphibia-Reptilia 23: 305-312.

McMasterM.K.DownsC.T. (2013): Thermoregulation in leopard tortoises in the Nama-Karoo: the importance of behaviour and core body temperatures. J. Therm. Biol. 38: 178-185.

PanagiotaM.ValakosE.D. (1992): Contribution to the thermal ecology of Testudo marginata and T. hermanni (Chelonia: Testudinidae) in semi-captivity. Herpetol. J. 2: 48-50.

PoughF.H. (1980): The advantages of ectothermy for tetrapods. Am. Nat. 115: 92-112.

PulfordE.HaileyA.StubbsD. (1984): Thermal relations of Testudo hermanni robertmertensi Wermuth in S. France. Amphibia-Reptilia 5: 37-41.

R Core Team (2015): R: a Language and Environment for Statistical Computing. R Foundation for Statistical ComputingVienna, Austria. URL http://www.R-project.org/. Accessed on 16 May 2016.

SearsM.W.AngillettaM.J. (2015): Costs and benefits of thermoregulation revisited: both the heterogeneity and spatial structure of temperature drive energetic costs. Am. Nat. 185: E94-E102.

WillemsenR.E. (1991): Differences in thermoregulation between Testudo hermanni and Testudo marginata and their ecological significance. Herpetol. J. 1: 559-567.

WrightJ.SteerE.HaileyA. (1988): Habitat separation in tortoises and the consequences for activity and thermoregulation. Can. J. Zool. 66: 1537-1544.

Figures

  • View in gallery

    Linear regression models of air temperatures (Ta) on body temperatures (Tb; left), and substrate temperatures (Ts) on body temperatures (Tb; right) for adult individuals of Testudo hermanni hermanni on Menorca (Balearic Islands, Spain). Air and substrate temperatures were taken at individual capture places. The thin lines accompanying the slope of regression depict the 95% confidence intervals.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 26 26 11
Full Text Views 7 7 6
PDF Downloads 3 3 2
EPUB Downloads 0 0 0